Transaction Hash:
Block:
24214714 at Jan-11-2026 11:19:59 PM +UTC
Transaction Fee:
0.00000245720760018 ETH
$0.004854
Gas Used:
57,394 Gas / 0.04281297 Gwei
Emitted Events:
| 723 |
chiliZ.Transfer( from=Forwarder, to=[Receiver] 0xd6a062cae6123c158768a5c444ca0896cc60d6b1, value=267992080000000000000000 )
|
| 724 |
Forwarder.TokensFlushed( tokenContractAddress=chiliZ, value=267992080000000000000000 )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
| 0x3506424F...5F8e3b4AF | |||||
|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 19.179373170000268617 Eth | 19.179373236003368617 Eth | 0.0000000660031 | |
| 0xddC50252...23E9117d5 | (Coinjar: Deployer 1) |
21.220015665782089551 Eth
Nonce: 144977
|
21.220013208574489371 Eth
Nonce: 144978
| 0.00000245720760018 |
Execution Trace
Coinjar 3.2da03409( )
WalletSimple.flushForwarderTokens( forwarderAddress=0x66fc8Eb395DCCc80A10483c0B87b6C0ef9DaA29f, tokenContractAddress=0x3506424F91fD33084466F402d5D97f05F8e3b4AF )Forwarder.flushTokens( tokenContractAddress=0x3506424F91fD33084466F402d5D97f05F8e3b4AF )
File 1 of 3: Forwarder
File 2 of 3: chiliZ
File 3 of 3: WalletSimple
pragma solidity ^0.4.14;
/**
* Contract that exposes the needed erc20 token functions
*/
contract ERC20Interface {
// Send _value amount of tokens to address _to
function transfer(address _to, uint256 _value) returns (bool success);
// Get the account balance of another account with address _owner
function balanceOf(address _owner) constant returns (uint256 balance);
}
/**
* Contract that will forward any incoming Ether to its creator
*/
contract Forwarder {
// Address to which any funds sent to this contract will be forwarded
address public parentAddress;
event ForwarderDeposited(address from, uint value, bytes data);
event TokensFlushed(
address tokenContractAddress, // The contract address of the token
uint value // Amount of token sent
);
/**
* Create the contract, and set the destination address to that of the creator
*/
function Forwarder() {
parentAddress = msg.sender;
}
/**
* Modifier that will execute internal code block only if the sender is a parent of the forwarder contract
*/
modifier onlyParent {
if (msg.sender != parentAddress) {
throw;
}
_;
}
/**
* Default function; Gets called when Ether is deposited, and forwards it to the destination address
*/
function() payable {
if (!parentAddress.call.value(msg.value)(msg.data))
throw;
// Fire off the deposited event if we can forward it
ForwarderDeposited(msg.sender, msg.value, msg.data);
}
/**
* Execute a token transfer of the full balance from the forwarder token to the main wallet contract
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushTokens(address tokenContractAddress) onlyParent {
ERC20Interface instance = ERC20Interface(tokenContractAddress);
var forwarderAddress = address(this);
var forwarderBalance = instance.balanceOf(forwarderAddress);
if (forwarderBalance == 0) {
return;
}
if (!instance.transfer(parentAddress, forwarderBalance)) {
throw;
}
TokensFlushed(tokenContractAddress, forwarderBalance);
}
/**
* It is possible that funds were sent to this address before the contract was deployed.
* We can flush those funds to the destination address.
*/
function flush() {
if (!parentAddress.call.value(this.balance)())
throw;
}
}
/**
* Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.
* Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.
*/
contract WalletSimple {
// Events
event Deposited(address from, uint value, bytes data);
event SafeModeActivated(address msgSender);
event Transacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation, // Operation hash (sha3 of toAddress, value, data, expireTime, sequenceId)
address toAddress, // The address the transaction was sent to
uint value, // Amount of Wei sent to the address
bytes data // Data sent when invoking the transaction
);
event TokenTransacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation, // Operation hash (sha3 of toAddress, value, tokenContractAddress, expireTime, sequenceId)
address toAddress, // The address the transaction was sent to
uint value, // Amount of token sent
address tokenContractAddress // The contract address of the token
);
// Public fields
address[] public signers; // The addresses that can co-sign transactions on the wallet
bool public safeMode = false; // When active, wallet may only send to signer addresses
// Internal fields
uint constant SEQUENCE_ID_WINDOW_SIZE = 10;
uint[10] recentSequenceIds;
/**
* Modifier that will execute internal code block only if the sender is an authorized signer on this wallet
*/
modifier onlysigner {
if (!isSigner(msg.sender)) {
throw;
}
_;
}
/**
* Set up a simple multi-sig wallet by specifying the signers allowed to be used on this wallet.
* 2 signers will be required to send a transaction from this wallet.
* Note: The sender is NOT automatically added to the list of signers.
* Signers CANNOT be changed once they are set
*
* @param allowedSigners An array of signers on the wallet
*/
function WalletSimple(address[] allowedSigners) {
if (allowedSigners.length != 3) {
// Invalid number of signers
throw;
}
signers = allowedSigners;
}
/**
* Gets called when a transaction is received without calling a method
*/
function() payable {
if (msg.value > 0) {
// Fire deposited event if we are receiving funds
Deposited(msg.sender, msg.value, msg.data);
}
}
/**
* Create a new contract (and also address) that forwards funds to this contract
* returns address of newly created forwarder address
*/
function createForwarder() onlysigner returns (address) {
return new Forwarder();
}
/**
* Execute a multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* The signature is a signed form (using eth.sign) of tightly packed toAddress, value, data, expireTime and sequenceId
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in Wei to be sent
* @param data the data to send to the toAddress when invoking the transaction
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature the result of eth.sign on the operationHash sha3(toAddress, value, data, expireTime, sequenceId)
*/
function sendMultiSig(address toAddress, uint value, bytes data, uint expireTime, uint sequenceId, bytes signature) onlysigner {
// Verify the other signer
var operationHash = sha3("ETHER", toAddress, value, data, expireTime, sequenceId);
var otherSigner = verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);
// Success, send the transaction
if (!(toAddress.call.value(value)(data))) {
// Failed executing transaction
throw;
}
Transacted(msg.sender, otherSigner, operationHash, toAddress, value, data);
}
/**
* Execute a multi-signature token transfer from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* The signature is a signed form (using eth.sign) of tightly packed toAddress, value, tokenContractAddress, expireTime and sequenceId
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in tokens to be sent
* @param tokenContractAddress the address of the erc20 token contract
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature the result of eth.sign on the operationHash sha3(toAddress, value, tokenContractAddress, expireTime, sequenceId)
*/
function sendMultiSigToken(address toAddress, uint value, address tokenContractAddress, uint expireTime, uint sequenceId, bytes signature) onlysigner {
// Verify the other signer
var operationHash = sha3("ERC20", toAddress, value, tokenContractAddress, expireTime, sequenceId);
var otherSigner = verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);
ERC20Interface instance = ERC20Interface(tokenContractAddress);
if (!instance.transfer(toAddress, value)) {
throw;
}
TokenTransacted(msg.sender, otherSigner, operationHash, toAddress, value, tokenContractAddress);
}
/**
* Execute a token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushForwarderTokens(address forwarderAddress, address tokenContractAddress) onlysigner {
Forwarder forwarder = Forwarder(forwarderAddress);
forwarder.flushTokens(tokenContractAddress);
}
/**
* Do common multisig verification for both eth sends and erc20token transfers
*
* @param toAddress the destination address to send an outgoing transaction
* @param operationHash the sha3 of the toAddress, value, data/tokenContractAddress and expireTime
* @param signature the tightly packed signature of r, s, and v as an array of 65 bytes (returned by eth.sign)
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* returns address of the address to send tokens or eth to
*/
function verifyMultiSig(address toAddress, bytes32 operationHash, bytes signature, uint expireTime, uint sequenceId) private returns (address) {
var otherSigner = recoverAddressFromSignature(operationHash, signature);
// Verify if we are in safe mode. In safe mode, the wallet can only send to signers
if (safeMode && !isSigner(toAddress)) {
// We are in safe mode and the toAddress is not a signer. Disallow!
throw;
}
// Verify that the transaction has not expired
if (expireTime < block.timestamp) {
// Transaction expired
throw;
}
// Try to insert the sequence ID. Will throw if the sequence id was invalid
tryInsertSequenceId(sequenceId);
if (!isSigner(otherSigner)) {
// Other signer not on this wallet or operation does not match arguments
throw;
}
if (otherSigner == msg.sender) {
// Cannot approve own transaction
throw;
}
return otherSigner;
}
/**
* Irrevocably puts contract into safe mode. When in this mode, transactions may only be sent to signing addresses.
*/
function activateSafeMode() onlysigner {
safeMode = true;
SafeModeActivated(msg.sender);
}
/**
* Determine if an address is a signer on this wallet
* @param signer address to check
* returns boolean indicating whether address is signer or not
*/
function isSigner(address signer) returns (bool) {
// Iterate through all signers on the wallet and
for (uint i = 0; i < signers.length; i++) {
if (signers[i] == signer) {
return true;
}
}
return false;
}
/**
* Gets the second signer's address using ecrecover
* @param operationHash the sha3 of the toAddress, value, data/tokenContractAddress and expireTime
* @param signature the tightly packed signature of r, s, and v as an array of 65 bytes (returned by eth.sign)
* returns address recovered from the signature
*/
function recoverAddressFromSignature(bytes32 operationHash, bytes signature) private returns (address) {
if (signature.length != 65) {
throw;
}
// We need to unpack the signature, which is given as an array of 65 bytes (from eth.sign)
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signature, 32))
s := mload(add(signature, 64))
v := and(mload(add(signature, 65)), 255)
}
if (v < 27) {
v += 27; // Ethereum versions are 27 or 28 as opposed to 0 or 1 which is submitted by some signing libs
}
return ecrecover(operationHash, v, r, s);
}
/**
* Verify that the sequence id has not been used before and inserts it. Throws if the sequence ID was not accepted.
* We collect a window of up to 10 recent sequence ids, and allow any sequence id that is not in the window and
* greater than the minimum element in the window.
* @param sequenceId to insert into array of stored ids
*/
function tryInsertSequenceId(uint sequenceId) onlysigner private {
// Keep a pointer to the lowest value element in the window
uint lowestValueIndex = 0;
for (uint i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
if (recentSequenceIds[i] == sequenceId) {
// This sequence ID has been used before. Disallow!
throw;
}
if (recentSequenceIds[i] < recentSequenceIds[lowestValueIndex]) {
lowestValueIndex = i;
}
}
if (sequenceId < recentSequenceIds[lowestValueIndex]) {
// The sequence ID being used is lower than the lowest value in the window
// so we cannot accept it as it may have been used before
throw;
}
if (sequenceId > (recentSequenceIds[lowestValueIndex] + 10000)) {
// Block sequence IDs which are much higher than the lowest value
// This prevents people blocking the contract by using very large sequence IDs quickly
throw;
}
recentSequenceIds[lowestValueIndex] = sequenceId;
}
/**
* Gets the next available sequence ID for signing when using executeAndConfirm
* returns the sequenceId one higher than the highest currently stored
*/
function getNextSequenceId() returns (uint) {
uint highestSequenceId = 0;
for (uint i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
if (recentSequenceIds[i] > highestSequenceId) {
highestSequenceId = recentSequenceIds[i];
}
}
return highestSequenceId + 1;
}
}File 2 of 3: chiliZ
pragma solidity ^0.4.24;
// File: openzeppelin-solidity/contracts/token/ERC20/IERC20.sol
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address who) external view returns (uint256);
function allowance(address owner, address spender)
external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value)
external returns (bool);
function transferFrom(address from, address to, uint256 value)
external returns (bool);
event Transfer(
address indexed from,
address indexed to,
uint256 value
);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: openzeppelin-solidity/contracts/math/SafeMath.sol
/**
* @title SafeMath
* @dev Math operations with safety checks that revert on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, reverts on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0); // Solidity only automatically asserts when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a);
uint256 c = a - b;
return c;
}
/**
* @dev Adds two numbers, reverts on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a);
return c;
}
/**
* @dev Divides two numbers and returns the remainder (unsigned integer modulo),
* reverts when dividing by zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0);
return a % b;
}
}
// File: openzeppelin-solidity/contracts/token/ERC20/ERC20.sol
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
* Originally based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowed;
uint256 private _totalSupply;
/**
* @dev Total number of tokens in existence
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev Gets the balance of the specified address.
* @param owner The address to query the balance of.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address owner) public view returns (uint256) {
return _balances[owner];
}
/**
* @dev Function to check the amount of tokens that an owner allowed to a spender.
* @param owner address The address which owns the funds.
* @param spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(
address owner,
address spender
)
public
view
returns (uint256)
{
return _allowed[owner][spender];
}
/**
* @dev Transfer token for a specified address
* @param to The address to transfer to.
* @param value The amount to be transferred.
*/
function transfer(address to, uint256 value) public returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
*/
function approve(address spender, uint256 value) public returns (bool) {
require(spender != address(0));
_allowed[msg.sender][spender] = value;
emit Approval(msg.sender, spender, value);
return true;
}
/**
* @dev Transfer tokens from one address to another
* @param from address The address which you want to send tokens from
* @param to address The address which you want to transfer to
* @param value uint256 the amount of tokens to be transferred
*/
function transferFrom(
address from,
address to,
uint256 value
)
public
returns (bool)
{
require(value <= _allowed[from][msg.sender]);
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);
_transfer(from, to, value);
return true;
}
/**
* @dev Increase the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed_[_spender] == 0. To increment
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param spender The address which will spend the funds.
* @param addedValue The amount of tokens to increase the allowance by.
*/
function increaseAllowance(
address spender,
uint256 addedValue
)
public
returns (bool)
{
require(spender != address(0));
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].add(addedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
/**
* @dev Decrease the amount of tokens that an owner allowed to a spender.
* approve should be called when allowed_[_spender] == 0. To decrement
* allowed value is better to use this function to avoid 2 calls (and wait until
* the first transaction is mined)
* From MonolithDAO Token.sol
* @param spender The address which will spend the funds.
* @param subtractedValue The amount of tokens to decrease the allowance by.
*/
function decreaseAllowance(
address spender,
uint256 subtractedValue
)
public
returns (bool)
{
require(spender != address(0));
_allowed[msg.sender][spender] = (
_allowed[msg.sender][spender].sub(subtractedValue));
emit Approval(msg.sender, spender, _allowed[msg.sender][spender]);
return true;
}
/**
* @dev Transfer token for a specified addresses
* @param from The address to transfer from.
* @param to The address to transfer to.
* @param value The amount to be transferred.
*/
function _transfer(address from, address to, uint256 value) internal {
require(value <= _balances[from]);
require(to != address(0));
_balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);
emit Transfer(from, to, value);
}
/**
* @dev Internal function that mints an amount of the token and assigns it to
* an account. This encapsulates the modification of balances such that the
* proper events are emitted.
* @param account The account that will receive the created tokens.
* @param value The amount that will be created.
*/
function _mint(address account, uint256 value) internal {
require(account != 0);
_totalSupply = _totalSupply.add(value);
_balances[account] = _balances[account].add(value);
emit Transfer(address(0), account, value);
}
/**
* @dev Internal function that burns an amount of the token of a given
* account.
* @param account The account whose tokens will be burnt.
* @param value The amount that will be burnt.
*/
function _burn(address account, uint256 value) internal {
require(account != 0);
require(value <= _balances[account]);
_totalSupply = _totalSupply.sub(value);
_balances[account] = _balances[account].sub(value);
emit Transfer(account, address(0), value);
}
/**
* @dev Internal function that burns an amount of the token of a given
* account, deducting from the sender's allowance for said account. Uses the
* internal burn function.
* @param account The account whose tokens will be burnt.
* @param value The amount that will be burnt.
*/
function _burnFrom(address account, uint256 value) internal {
require(value <= _allowed[account][msg.sender]);
// Should https://github.com/OpenZeppelin/zeppelin-solidity/issues/707 be accepted,
// this function needs to emit an event with the updated approval.
_allowed[account][msg.sender] = _allowed[account][msg.sender].sub(
value);
_burn(account, value);
}
}
// File: openzeppelin-solidity/contracts/access/Roles.sol
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev give an account access to this role
*/
function add(Role storage role, address account) internal {
require(account != address(0));
require(!has(role, account));
role.bearer[account] = true;
}
/**
* @dev remove an account's access to this role
*/
function remove(Role storage role, address account) internal {
require(account != address(0));
require(has(role, account));
role.bearer[account] = false;
}
/**
* @dev check if an account has this role
* @return bool
*/
function has(Role storage role, address account)
internal
view
returns (bool)
{
require(account != address(0));
return role.bearer[account];
}
}
// File: openzeppelin-solidity/contracts/access/roles/PauserRole.sol
contract PauserRole {
using Roles for Roles.Role;
event PauserAdded(address indexed account);
event PauserRemoved(address indexed account);
Roles.Role private pausers;
constructor() internal {
_addPauser(msg.sender);
}
modifier onlyPauser() {
require(isPauser(msg.sender));
_;
}
function isPauser(address account) public view returns (bool) {
return pausers.has(account);
}
function addPauser(address account) public onlyPauser {
_addPauser(account);
}
function renouncePauser() public {
_removePauser(msg.sender);
}
function _addPauser(address account) internal {
pausers.add(account);
emit PauserAdded(account);
}
function _removePauser(address account) internal {
pausers.remove(account);
emit PauserRemoved(account);
}
}
// File: openzeppelin-solidity/contracts/lifecycle/Pausable.sol
/**
* @title Pausable
* @dev Base contract which allows children to implement an emergency stop mechanism.
*/
contract Pausable is PauserRole {
event Paused(address account);
event Unpaused(address account);
bool private _paused;
constructor() internal {
_paused = false;
}
/**
* @return true if the contract is paused, false otherwise.
*/
function paused() public view returns(bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!_paused);
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(_paused);
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() public onlyPauser whenNotPaused {
_paused = true;
emit Paused(msg.sender);
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() public onlyPauser whenPaused {
_paused = false;
emit Unpaused(msg.sender);
}
}
// File: openzeppelin-solidity/contracts/token/ERC20/ERC20Pausable.sol
/**
* @title Pausable token
* @dev ERC20 modified with pausable transfers.
**/
contract ERC20Pausable is ERC20, Pausable {
function transfer(
address to,
uint256 value
)
public
whenNotPaused
returns (bool)
{
return super.transfer(to, value);
}
function transferFrom(
address from,
address to,
uint256 value
)
public
whenNotPaused
returns (bool)
{
return super.transferFrom(from, to, value);
}
function approve(
address spender,
uint256 value
)
public
whenNotPaused
returns (bool)
{
return super.approve(spender, value);
}
function increaseAllowance(
address spender,
uint addedValue
)
public
whenNotPaused
returns (bool success)
{
return super.increaseAllowance(spender, addedValue);
}
function decreaseAllowance(
address spender,
uint subtractedValue
)
public
whenNotPaused
returns (bool success)
{
return super.decreaseAllowance(spender, subtractedValue);
}
}
// File: openzeppelin-solidity/contracts/token/ERC20/ERC20Detailed.sol
/**
* @title ERC20Detailed token
* @dev The decimals are only for visualization purposes.
* All the operations are done using the smallest and indivisible token unit,
* just as on Ethereum all the operations are done in wei.
*/
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
constructor(string name, string symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @return the name of the token.
*/
function name() public view returns(string) {
return _name;
}
/**
* @return the symbol of the token.
*/
function symbol() public view returns(string) {
return _symbol;
}
/**
* @return the number of decimals of the token.
*/
function decimals() public view returns(uint8) {
return _decimals;
}
}
// File: openzeppelin-solidity/contracts/token/ERC20/SafeERC20.sol
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
function safeTransfer(
IERC20 token,
address to,
uint256 value
)
internal
{
require(token.transfer(to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
)
internal
{
require(token.transferFrom(from, to, value));
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
)
internal
{
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require((value == 0) || (token.allowance(msg.sender, spender) == 0));
require(token.approve(spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
)
internal
{
uint256 newAllowance = token.allowance(address(this), spender).add(value);
require(token.approve(spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
)
internal
{
uint256 newAllowance = token.allowance(address(this), spender).sub(value);
require(token.approve(spender, newAllowance));
}
}
// File: contracts/Chiliz-with-imports.sol
contract chiliZ is ERC20, ERC20Detailed, ERC20Pausable {
using SafeERC20 for ERC20;
constructor()
ERC20()
ERC20Detailed("chiliZ", "CHZ", 18)
ERC20Pausable()
public
{
_mint(msg.sender, 8888888888 * (uint256(10) ** 18));
}
}File 3 of 3: WalletSimple
pragma solidity ^0.4.14;
/**
* Contract that exposes the needed erc20 token functions
*/
contract ERC20Interface {
// Send _value amount of tokens to address _to
function transfer(address _to, uint256 _value) returns (bool success);
// Get the account balance of another account with address _owner
function balanceOf(address _owner) constant returns (uint256 balance);
}
/**
* Contract that will forward any incoming Ether to its creator
*/
contract Forwarder {
// Address to which any funds sent to this contract will be forwarded
address public parentAddress;
event ForwarderDeposited(address from, uint value, bytes data);
event TokensFlushed(
address tokenContractAddress, // The contract address of the token
uint value // Amount of token sent
);
/**
* Create the contract, and set the destination address to that of the creator
*/
function Forwarder() {
parentAddress = msg.sender;
}
/**
* Modifier that will execute internal code block only if the sender is a parent of the forwarder contract
*/
modifier onlyParent {
if (msg.sender != parentAddress) {
throw;
}
_;
}
/**
* Default function; Gets called when Ether is deposited, and forwards it to the destination address
*/
function() payable {
if (!parentAddress.call.value(msg.value)(msg.data))
throw;
// Fire off the deposited event if we can forward it
ForwarderDeposited(msg.sender, msg.value, msg.data);
}
/**
* Execute a token transfer of the full balance from the forwarder token to the main wallet contract
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushTokens(address tokenContractAddress) onlyParent {
ERC20Interface instance = ERC20Interface(tokenContractAddress);
var forwarderAddress = address(this);
var forwarderBalance = instance.balanceOf(forwarderAddress);
if (forwarderBalance == 0) {
return;
}
if (!instance.transfer(parentAddress, forwarderBalance)) {
throw;
}
TokensFlushed(tokenContractAddress, forwarderBalance);
}
/**
* It is possible that funds were sent to this address before the contract was deployed.
* We can flush those funds to the destination address.
*/
function flush() {
if (!parentAddress.call.value(this.balance)())
throw;
}
}
/**
* Basic multi-signer wallet designed for use in a co-signing environment where 2 signatures are required to move funds.
* Typically used in a 2-of-3 signing configuration. Uses ecrecover to allow for 2 signatures in a single transaction.
*/
contract WalletSimple {
// Events
event Deposited(address from, uint value, bytes data);
event SafeModeActivated(address msgSender);
event Transacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation, // Operation hash (sha3 of toAddress, value, data, expireTime, sequenceId)
address toAddress, // The address the transaction was sent to
uint value, // Amount of Wei sent to the address
bytes data // Data sent when invoking the transaction
);
event TokenTransacted(
address msgSender, // Address of the sender of the message initiating the transaction
address otherSigner, // Address of the signer (second signature) used to initiate the transaction
bytes32 operation, // Operation hash (sha3 of toAddress, value, tokenContractAddress, expireTime, sequenceId)
address toAddress, // The address the transaction was sent to
uint value, // Amount of token sent
address tokenContractAddress // The contract address of the token
);
// Public fields
address[] public signers; // The addresses that can co-sign transactions on the wallet
bool public safeMode = false; // When active, wallet may only send to signer addresses
// Internal fields
uint constant SEQUENCE_ID_WINDOW_SIZE = 10;
uint[10] recentSequenceIds;
/**
* Modifier that will execute internal code block only if the sender is an authorized signer on this wallet
*/
modifier onlysigner {
if (!isSigner(msg.sender)) {
throw;
}
_;
}
/**
* Set up a simple multi-sig wallet by specifying the signers allowed to be used on this wallet.
* 2 signers will be required to send a transaction from this wallet.
* Note: The sender is NOT automatically added to the list of signers.
* Signers CANNOT be changed once they are set
*
* @param allowedSigners An array of signers on the wallet
*/
function WalletSimple(address[] allowedSigners) {
if (allowedSigners.length != 3) {
// Invalid number of signers
throw;
}
signers = allowedSigners;
}
/**
* Gets called when a transaction is received without calling a method
*/
function() payable {
if (msg.value > 0) {
// Fire deposited event if we are receiving funds
Deposited(msg.sender, msg.value, msg.data);
}
}
/**
* Create a new contract (and also address) that forwards funds to this contract
* returns address of newly created forwarder address
*/
function createForwarder() onlysigner returns (address) {
return new Forwarder();
}
/**
* Execute a multi-signature transaction from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* The signature is a signed form (using eth.sign) of tightly packed toAddress, value, data, expireTime and sequenceId
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in Wei to be sent
* @param data the data to send to the toAddress when invoking the transaction
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature the result of eth.sign on the operationHash sha3(toAddress, value, data, expireTime, sequenceId)
*/
function sendMultiSig(address toAddress, uint value, bytes data, uint expireTime, uint sequenceId, bytes signature) onlysigner {
// Verify the other signer
var operationHash = sha3("ETHER", toAddress, value, data, expireTime, sequenceId);
var otherSigner = verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);
// Success, send the transaction
if (!(toAddress.call.value(value)(data))) {
// Failed executing transaction
throw;
}
Transacted(msg.sender, otherSigner, operationHash, toAddress, value, data);
}
/**
* Execute a multi-signature token transfer from this wallet using 2 signers: one from msg.sender and the other from ecrecover.
* The signature is a signed form (using eth.sign) of tightly packed toAddress, value, tokenContractAddress, expireTime and sequenceId
* Sequence IDs are numbers starting from 1. They are used to prevent replay attacks and may not be repeated.
*
* @param toAddress the destination address to send an outgoing transaction
* @param value the amount in tokens to be sent
* @param tokenContractAddress the address of the erc20 token contract
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* @param signature the result of eth.sign on the operationHash sha3(toAddress, value, tokenContractAddress, expireTime, sequenceId)
*/
function sendMultiSigToken(address toAddress, uint value, address tokenContractAddress, uint expireTime, uint sequenceId, bytes signature) onlysigner {
// Verify the other signer
var operationHash = sha3("ERC20", toAddress, value, tokenContractAddress, expireTime, sequenceId);
var otherSigner = verifyMultiSig(toAddress, operationHash, signature, expireTime, sequenceId);
ERC20Interface instance = ERC20Interface(tokenContractAddress);
if (!instance.transfer(toAddress, value)) {
throw;
}
TokenTransacted(msg.sender, otherSigner, operationHash, toAddress, value, tokenContractAddress);
}
/**
* Execute a token flush from one of the forwarder addresses. This transfer needs only a single signature and can be done by any signer
*
* @param forwarderAddress the address of the forwarder address to flush the tokens from
* @param tokenContractAddress the address of the erc20 token contract
*/
function flushForwarderTokens(address forwarderAddress, address tokenContractAddress) onlysigner {
Forwarder forwarder = Forwarder(forwarderAddress);
forwarder.flushTokens(tokenContractAddress);
}
/**
* Do common multisig verification for both eth sends and erc20token transfers
*
* @param toAddress the destination address to send an outgoing transaction
* @param operationHash the sha3 of the toAddress, value, data/tokenContractAddress and expireTime
* @param signature the tightly packed signature of r, s, and v as an array of 65 bytes (returned by eth.sign)
* @param expireTime the number of seconds since 1970 for which this transaction is valid
* @param sequenceId the unique sequence id obtainable from getNextSequenceId
* returns address of the address to send tokens or eth to
*/
function verifyMultiSig(address toAddress, bytes32 operationHash, bytes signature, uint expireTime, uint sequenceId) private returns (address) {
var otherSigner = recoverAddressFromSignature(operationHash, signature);
// Verify if we are in safe mode. In safe mode, the wallet can only send to signers
if (safeMode && !isSigner(toAddress)) {
// We are in safe mode and the toAddress is not a signer. Disallow!
throw;
}
// Verify that the transaction has not expired
if (expireTime < block.timestamp) {
// Transaction expired
throw;
}
// Try to insert the sequence ID. Will throw if the sequence id was invalid
tryInsertSequenceId(sequenceId);
if (!isSigner(otherSigner)) {
// Other signer not on this wallet or operation does not match arguments
throw;
}
if (otherSigner == msg.sender) {
// Cannot approve own transaction
throw;
}
return otherSigner;
}
/**
* Irrevocably puts contract into safe mode. When in this mode, transactions may only be sent to signing addresses.
*/
function activateSafeMode() onlysigner {
safeMode = true;
SafeModeActivated(msg.sender);
}
/**
* Determine if an address is a signer on this wallet
* @param signer address to check
* returns boolean indicating whether address is signer or not
*/
function isSigner(address signer) returns (bool) {
// Iterate through all signers on the wallet and
for (uint i = 0; i < signers.length; i++) {
if (signers[i] == signer) {
return true;
}
}
return false;
}
/**
* Gets the second signer's address using ecrecover
* @param operationHash the sha3 of the toAddress, value, data/tokenContractAddress and expireTime
* @param signature the tightly packed signature of r, s, and v as an array of 65 bytes (returned by eth.sign)
* returns address recovered from the signature
*/
function recoverAddressFromSignature(bytes32 operationHash, bytes signature) private returns (address) {
if (signature.length != 65) {
throw;
}
// We need to unpack the signature, which is given as an array of 65 bytes (from eth.sign)
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signature, 32))
s := mload(add(signature, 64))
v := and(mload(add(signature, 65)), 255)
}
if (v < 27) {
v += 27; // Ethereum versions are 27 or 28 as opposed to 0 or 1 which is submitted by some signing libs
}
return ecrecover(operationHash, v, r, s);
}
/**
* Verify that the sequence id has not been used before and inserts it. Throws if the sequence ID was not accepted.
* We collect a window of up to 10 recent sequence ids, and allow any sequence id that is not in the window and
* greater than the minimum element in the window.
* @param sequenceId to insert into array of stored ids
*/
function tryInsertSequenceId(uint sequenceId) onlysigner private {
// Keep a pointer to the lowest value element in the window
uint lowestValueIndex = 0;
for (uint i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
if (recentSequenceIds[i] == sequenceId) {
// This sequence ID has been used before. Disallow!
throw;
}
if (recentSequenceIds[i] < recentSequenceIds[lowestValueIndex]) {
lowestValueIndex = i;
}
}
if (sequenceId < recentSequenceIds[lowestValueIndex]) {
// The sequence ID being used is lower than the lowest value in the window
// so we cannot accept it as it may have been used before
throw;
}
if (sequenceId > (recentSequenceIds[lowestValueIndex] + 10000)) {
// Block sequence IDs which are much higher than the lowest value
// This prevents people blocking the contract by using very large sequence IDs quickly
throw;
}
recentSequenceIds[lowestValueIndex] = sequenceId;
}
/**
* Gets the next available sequence ID for signing when using executeAndConfirm
* returns the sequenceId one higher than the highest currently stored
*/
function getNextSequenceId() returns (uint) {
uint highestSequenceId = 0;
for (uint i = 0; i < SEQUENCE_ID_WINDOW_SIZE; i++) {
if (recentSequenceIds[i] > highestSequenceId) {
highestSequenceId = recentSequenceIds[i];
}
}
return highestSequenceId + 1;
}
}