Transaction Hash:
Block:
24509922 at Feb-22-2026 04:09:23 AM +UTC
Transaction Fee:
0.000051415418361484 ETH
$0.10
Gas Used:
398,147 Gas / 0.129136772 Gwei
Emitted Events:
| 62 |
0x5e1f62dac767b0491e3ce72469c217365d5b48cc.0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb( 0x7724394874fdd8ad13292ec739b441f85c6559f10dc4141b8d4c0fa4cbf55bdb, 00000000000000000000000000000000000000000000000000000000000344eb )
|
| 63 |
0x5e1f62dac767b0491e3ce72469c217365d5b48cc.0x7970b0744fdb6cf0b120e5e0a5f4da3ab8cbec6d5d9ec8a4f327ccc1d8a5eb8b( 0x7970b0744fdb6cf0b120e5e0a5f4da3ab8cbec6d5d9ec8a4f327ccc1d8a5eb8b, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000002, 0000000000000000000000000000000000000000000000000000000000000064, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 64 |
WETH9.Deposit( dst=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, wad=249761835085869452 )
|
| 65 |
WETH9.Transfer( src=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, dst=UniversalUniswapV3Adaptor, wad=137369009297228198 )
|
| 66 |
TetherToken.Transfer( from=UniswapV3Pool, to=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, value=271259770 )
|
| 67 |
WETH9.Transfer( src=UniversalUniswapV3Adaptor, dst=UniswapV3Pool, wad=137369009297228198 )
|
| 68 |
UniswapV3Pool.Swap( sender=UniversalUniswapV3Adaptor, recipient=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, amount0=137369009297228198, amount1=-271259770, sqrtPriceX96=3520854171708312671726622, liquidity=842122049698794785, tick=-200438 )
|
| 69 |
WETH9.Transfer( src=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, dst=UniversalUniswapV3Adaptor, wad=112392825788641254 )
|
| 70 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x000000000000000000000000e0554a476a092703abdb3ef35c80e0d76d32939f, 0x0000000000000000000000005e1f62dac767b0491e3ce72469c217365d5b48cc, 000000000000000000000000000000000000000000000000000000000d39adf0 )
|
| 71 |
WETH9.Transfer( src=UniversalUniswapV3Adaptor, dst=0xE0554a476A092703abdB3Ef35c80e0D76d32939F, wad=112392825788641254 )
|
| 72 |
0xe0554a476a092703abdb3ef35c80e0d76d32939f.0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67( 0xc42079f94a6350d7e6235f29174924f928cc2ac818eb64fed8004e115fbcca67, 0x0000000000000000000000006747bcaf9bd5a5f0758cbe08903490e45ddfacb5, 0x0000000000000000000000005e1f62dac767b0491e3ce72469c217365d5b48cc, fffffffffffffffffffffffffffffffffffffffffffffffffffffffff2c65210, 000000000000000000000000000000000000000000000000018f4cadf86f2fe6, 00000000000000000000000000000000000057e9dcc74f3962643f2154743a35, 000000000000000000000000000000000000000000000000015f5757fc364a57, 0000000000000000000000000000000000000000000000000000000000030ef8 )
|
| 73 |
TetherToken.Transfer( from=0x5e1f62dac767b0491e3ce72469c217365d5b48cc, to=0x04571C32A4E1c5f39Bc3a238Cb95B215058c432C, value=271259770 )
|
| 74 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x00000000000000000000000004571c32a4e1c5f39bc3a238cb95b215058c432c, 0x0000000000000000000000005e1f62dac767b0491e3ce72469c217365d5b48cc, 000000000000000000000000000000000000000000000000000000001029e093 )
|
| 75 |
0x04571c32a4e1c5f39bc3a238cb95b215058c432c.0xc2c0245e056d5fb095f04cd6373bc770802ebd1e6c918eb78fdef843cdb37b0f( 0xc2c0245e056d5fb095f04cd6373bc770802ebd1e6c918eb78fdef843cdb37b0f, 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 00000000000000000000000000000000000000000000000000000000102b187a, 000000000000000000000000000000000000000000000000000000001029e093, 00000000000000000000000056bd269db96a089295d742351ba459fb0c279fe2, 0000000000000000000000005e1f62dac767b0491e3ce72469c217365d5b48cc )
|
| 76 |
FiatTokenProxy.0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef( 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef, 0x0000000000000000000000005e1f62dac767b0491e3ce72469c217365d5b48cc, 0x000000000000000000000000959251c8fe6dc87ebf0c5f5312a2e44cc6561c4d, 000000000000000000000000000000000000000000000000000000001d638e83 )
|
| 77 |
0x5e1f62dac767b0491e3ce72469c217365d5b48cc.0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c( 0x1bb43f2da90e35f7b0cf38521ca95a49e68eb42fac49924930a5bd73cdf7576c, 000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48, 000000000000000000000000959251c8fe6dc87ebf0c5f5312a2e44cc6561c4d, 00000000000000000000000000000000000000000000000003775510d2be318c, 000000000000000000000000000000000000000000000000000000001d638e83 )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
| 0x04571C32...5058c432C | |||||
|
0x39634336...6fb82Aa49
Miner
| (quasarbuilder) | 21.105069703361844111 Eth | 21.105108721767844111 Eth | 0.000039018406 | |
| 0x959251c8...Cc6561c4d |
0.250237522147907005 Eth
Nonce: 19
|
0.000299328254438516 Eth
Nonce: 20
| 0.249938193893468489 | ||
| 0xA0b86991...E3606eB48 | |||||
| 0xC02aaA39...83C756Cc2 | 2,065,556.899652987970511254 Eth | 2,065,557.149414823056380706 Eth | 0.249761835085869452 | ||
| 0xc7bBeC68...9bA1b0e9b | (Uniswap V3: USDT 9) | ||||
| 0xdAC17F95...13D831ec7 | |||||
| 0xE0554a47...76d32939F | (Uniswap V3: USDC 4) | ||||
| 0xf7085381...9c9a2cdCa | 0.25383529886487276 Eth | 0.253960242254110313 Eth | 0.000124943389237553 |
Execution Trace
ETH 0.249886778475107005
0x7b29feb9f3de3d62df3b4047f69c495cbff03180.8d80ff0a( )
- ETH 0.000124943389237553
0xf70853810b8fc6869068dc8f7f94c439c9a2cdca.CALL( ) ETH 0.249761835085869452
OKX Labs 1.0c307f76( )FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x959251c8FE6Dc87Ebf0C5f5312A2e44Cc6561c4d ) => ( 0 )
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC ) => ( 0 )
-
- ETH 0.249761835085869452
WETH9.CALL( )
-
WETH9.transfer( dst=0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5, wad=137369009297228198 ) => ( True )
UniversalUniswapV3Adaptor.sellBase( to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, pool=0xc7bBeC68d12a0d1830360F8Ec58fA599bA1b0e9b, moreInfo=0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000040000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7 )-
WETH9.balanceOf( 0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5 ) => ( 137369009297228198 )
UniswapV3Pool.swap( recipient=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, zeroForOne=True, amountSpecified=137369009297228198, sqrtPriceLimitX96=4295128740, data=0x000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7 ) => ( amount0=137369009297228198, amount1=-271259770 )-
TetherToken.transfer( _to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, _value=271259770 )
-
WETH9.balanceOf( 0xc7bBeC68d12a0d1830360F8Ec58fA599bA1b0e9b ) => ( 2591861831909924863324 )
UniversalUniswapV3Adaptor.uniswapV3SwapCallback( amount0Delta=137369009297228198, amount1Delta=-271259770, data=0x000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000DAC17F958D2EE523A2206206994597C13D831EC7 )-
WETH9.transfer( dst=0xc7bBeC68d12a0d1830360F8Ec58fA599bA1b0e9b, wad=137369009297228198 ) => ( True )
-
-
WETH9.balanceOf( 0xc7bBeC68d12a0d1830360F8Ec58fA599bA1b0e9b ) => ( 2591999200919222091522 )
-
-
WETH9.balanceOf( 0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5 ) => ( 0 )
-
-
WETH9.transfer( dst=0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5, wad=112392825788641254 ) => ( True )
UniversalUniswapV3Adaptor.sellQuote( to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, pool=0xE0554a476A092703abdB3Ef35c80e0D76d32939F, moreInfo=0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000040000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48 )-
WETH9.balanceOf( 0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5 ) => ( 112392825788641254 )
Uniswap V3: USDC 4.128acb08( )FiatTokenProxy.a9059cbb( )
-
FiatTokenV2_2.transfer( to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, value=221883888 ) => ( True )
-
-
WETH9.balanceOf( 0xE0554a476A092703abdB3Ef35c80e0D76d32939F ) => ( 1103729259170778767980 )
UniversalUniswapV3Adaptor.uniswapV3SwapCallback( amount0Delta=-221883888, amount1Delta=112392825788641254, data=0x000000000000000000000000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC2000000000000000000000000A0B86991C6218B36C1D19D4A2E9EB0CE3606EB48 )-
WETH9.transfer( dst=0xE0554a476A092703abdB3Ef35c80e0D76d32939F, wad=112392825788641254 ) => ( True )
-
-
WETH9.balanceOf( 0xE0554a476A092703abdB3Ef35c80e0D76d32939F ) => ( 1103841651996567409234 )
-
WETH9.balanceOf( 0x6747BcaF9bD5a5F0758Cbe08903490E45DdfACB5 ) => ( 0 )
-
-
TetherToken.balanceOf( who=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC ) => ( 271259770 )
-
TetherToken.transfer( _to=0x04571C32A4E1c5f39Bc3a238Cb95B215058c432C, _value=271259770 )
0x56bd269db96a089295d742351ba459fb0c279fe2.30e6ae31( )
0x04571c32a4e1c5f39bc3a238cb95b215058c432c.bd6015b4( )
GSP.sellBase( to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC ) => ( receiveQuoteAmount=271179923 )-
TetherToken.balanceOf( who=0x04571C32A4E1c5f39Bc3a238Cb95B215058c432C ) => ( 177973961569 )
FiatTokenProxy.a9059cbb( )
-
FiatTokenV2_2.transfer( to=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC, value=271179923 ) => ( True )
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x04571C32A4E1c5f39Bc3a238Cb95B215058c432C ) => ( 134026568176 )
-
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x5E1f62Dac767b0491e3CE72469C217365D5B48cC ) => ( 493063811 )
-
FiatTokenProxy.a9059cbb( )
-
FiatTokenV2_2.transfer( to=0x959251c8FE6Dc87Ebf0C5f5312A2e44Cc6561c4d, value=493063811 ) => ( True )
-
FiatTokenProxy.70a08231( )
-
FiatTokenV2_2.balanceOf( account=0x959251c8FE6Dc87Ebf0C5f5312A2e44Cc6561c4d ) => ( 493063811 )
-
File 1 of 7: WETH9
File 2 of 7: UniversalUniswapV3Adaptor
File 3 of 7: UniswapV3Pool
File 4 of 7: TetherToken
File 5 of 7: FiatTokenProxy
File 6 of 7: FiatTokenV2_2
File 7 of 7: GSP
// Copyright (C) 2015, 2016, 2017 Dapphub
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.4.18;
contract WETH9 {
string public name = "Wrapped Ether";
string public symbol = "WETH";
uint8 public decimals = 18;
event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
function() public payable {
deposit();
}
function deposit() public payable {
balanceOf[msg.sender] += msg.value;
Deposit(msg.sender, msg.value);
}
function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);
}
function totalSupply() public view returns (uint) {
return this.balance;
}
function approve(address guy, uint wad) public returns (bool) {
allowance[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);
}
function transferFrom(address src, address dst, uint wad)
public
returns (bool)
{
require(balanceOf[src] >= wad);
if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowance[src][msg.sender] >= wad);
allowance[src][msg.sender] -= wad;
}
balanceOf[src] -= wad;
balanceOf[dst] += wad;
Transfer(src, dst, wad);
return true;
}
}
/*
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
*/File 2 of 7: UniversalUniswapV3Adaptor
// SPDX-License-Identifier: MIT
// solhint-disable
pragma solidity ^0.8.0;
import {IAdapter} from "../../interfaces/IAdapter.sol";
import {IERC20} from "../../interfaces/IERC20.sol";
import {SafeERC20} from "../../libraries/SafeERC20.sol";
import {IWETH} from "../../interfaces/IWETH.sol";
import {IUniV3} from "../../interfaces/IUniV3.sol";
/// @dev specific flag for refund logic, "0x3ca20afc" is flexible and also used for commission, "ccc" mean refund
uint256 constant ORIGIN_PAYER = 0x3ca20afc2ccc0000000000000000000000000000000000000000000000000000;
uint256 constant ADDRESS_MASK = 0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff;
abstract contract BaseUniversalUniswapV3Adaptor is IAdapter {
address public immutable WETH;
uint160 public immutable MIN_SQRT_RATIO;
uint160 public immutable MAX_SQRT_RATIO;
/// @notice throw error when amount is not positive
error InvalidAmount();
/// @notice throw error when payer is not the contract itself or value is not required
error InvalidPay();
constructor(address weth, uint160 minSqrtRatio, uint160 maxSqrtRatio) {
WETH = weth;
MIN_SQRT_RATIO = minSqrtRatio;
MAX_SQRT_RATIO = maxSqrtRatio;
}
function sellBase(
address to,
address pool,
bytes memory moreInfo
) external override {
_sell(to, pool, moreInfo);
}
function sellQuote(
address to,
address pool,
bytes memory moreInfo
) external override {
_sell(to, pool, moreInfo);
}
function _sell(address to, address pool, bytes memory moreInfo) internal {
(uint160 sqrtX96, bytes memory data) = abi.decode(
moreInfo,
(uint160, bytes)
);
_uniswapV3Swap(to, pool, sqrtX96, data, _getPayerOrigin());
}
function _uniswapV3Swap(
address to,
address pool,
uint160 sqrtX96,
bytes memory data,
uint256 payerOrigin
) internal {
(address fromToken, address toToken) = abi.decode(
data,
(address, address)
);
uint256 sellAmount = IERC20(fromToken).balanceOf(address(this));
bool zeroForOne = fromToken < toToken;
// Call the pool's swap function
IUniV3(pool).swap(
to,
zeroForOne,
int256(sellAmount),
sqrtX96 == 0
? (zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1)
: sqrtX96,
data
);
/// @notice Refund logic: if there is leftover fromToken, refund to payerOrigin
address _payerOrigin;
if ((payerOrigin & ORIGIN_PAYER) == ORIGIN_PAYER) {
_payerOrigin = address(uint160(uint256(payerOrigin) & ADDRESS_MASK));
}
uint256 amount = IERC20(fromToken).balanceOf(address(this));
if (amount > 0 && _payerOrigin != address(0)) {
SafeERC20.safeTransfer(IERC20(fromToken), _payerOrigin, amount);
}
}
// Common internal callback logic for all V3-like protocols
function _universalSwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes memory data
) internal {
if (amount0Delta <= 0 && amount1Delta <= 0) {
revert InvalidAmount();
}
(address tokenIn, address tokenOut) = abi.decode(
data,
(address, address)
);
address tokenA = tokenIn;
address tokenB = tokenOut;
if (tokenA > tokenB) {
(tokenA, tokenB) = (tokenB, tokenA);
}
(bool isExactInput, uint256 amountToPay) = amount0Delta > 0
? (tokenIn < tokenOut, uint256(amount0Delta))
: (tokenOut < tokenIn, uint256(amount1Delta));
if (isExactInput) {
pay(tokenIn, address(this), msg.sender, amountToPay);
} else {
pay(tokenOut, address(this), msg.sender, amountToPay);
}
}
/// @notice Internal function to handle token payments during swaps
/// @dev This function handles two types of payments:
/// 1. WETH payments: If the token is WETH and contract has enough ETH balance,
/// it will wrap ETH to WETH and transfer to recipient
/// 2. ERC20 payments: If the payer is the contract itself, it will transfer
/// the ERC20 tokens directly to the recipient
/// @param token The token address to pay with (WETH or ERC20)
/// @param payer The address that should pay the tokens
/// @param recipient The address that should receive the tokens
/// @param value The amount of tokens to pay
/// @custom:error InvalidPay Thrown when payer is not the contract itself
function pay(
address token,
address payer,
address recipient,
uint256 value
) internal {
/// @notice pay with WETH
if (token == WETH && address(this).balance >= value) {
IWETH(WETH).deposit{value: value}();
IWETH(WETH).transfer(recipient, value);
/// @notice pay with ERC20
} else if (payer == address(this)) {
SafeERC20.safeTransfer(IERC20(token), recipient, value);
} else {
revert InvalidPay();
}
}
function _getPayerOrigin() internal pure returns (uint256 payerOrigin) {
assembly {
// Get the total size of the calldata
let size := calldatasize()
// Load the last 32 bytes of the calldata, which is assumed to contain the payer origin
// Assumption: The calldata is structured such that the payer origin is always at the end
payerOrigin := calldataload(sub(size, 32))
}
}
// Fallback function to handle unexpected V3-like callbacks.
// It expects calldata matching the (int256 amount0Delta, int256 amount1Delta, bytes memory data) signature
// after the 4-byte function selector.
fallback(bytes calldata _calldata) external returns (bytes memory) {
(int256 amount0Delta, int256 amount1Delta, bytes memory data) = abi.decode(_calldata[4:], (int256, int256, bytes));
_universalSwapCallback(amount0Delta, amount1Delta, data);
// Uniswap V3 callbacks typically do not return values.
// Returning empty bytes is standard for fallbacks that successfully handle a call
// but don't have a specific return value defined by an interface.
return bytes("");
}
}
// SPDX-License-Identifier: MIT
// solhint-disable
pragma solidity ^0.8.0;
import {BaseUniversalUniswapV3Adaptor} from "./BaseUniversalUniswapV3Adaptor.sol";
/**
* @title UniversalUniswapV3Adaptor
* @notice Base contract for Universal Uniswap V3 Adapter implementation
* @dev This contract serves as the foundation for adapting various Uniswap V3-like DEX protocols
*
* Supported DEX Protocols:
* 1. Uniswap V3 Family:
* - Uniswap V3
* - Sheepdex
*
* 2. Algebra Family:
* - CamelotV3
* - KimV4
* - ThenaV2
* - Quickswapv3
* - HerculesV3
* - ZyberV3
*
* 3. Other V3-like DEXs:
* - Agni
* - FusionX
* - RamsesV2 (including NileCL)
* - Xei
* - PancakeV3
* - FireflyV3
*
* @custom:security-contact security@yourprotocol.com
*/
contract UniversalUniswapV3Adaptor is BaseUniversalUniswapV3Adaptor {
constructor(
address weth,
uint160 minSqrtRatio,
uint160 maxSqrtRatio
) BaseUniversalUniswapV3Adaptor(weth, minSqrtRatio, maxSqrtRatio) {}
// Uniswap V3 callback(
// Sheepdex,
// etc.)
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// Agni callback
function agniSwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// Algebra/Algebra-like callback (
// CamelotV3,
// KimV4,
// ThenaV2,
// Quickswapv3,
// HerculesV3,
// ZyberV3,
// etc.)
function algebraSwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// FusionX callback
function fusionXV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// RamsesV2 callback(
// NileCL,
// etc.)
function ramsesV2SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// Xei callback
function xeiV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// PancakeV3 callback
function pancakeV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
// FireflyV3 callback
function fireflyV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external {
_universalSwapCallback(amount0Delta, amount1Delta, data);
}
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v2;
interface IAdapter {
function sellBase(
address to,
address pool,
bytes memory data
) external;
function sellQuote(
address to,
address pool,
bytes memory data
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Interface for DAI-style permits
interface IDaiLikePermit {
function permit(
address holder,
address spender,
uint256 nonce,
uint256 expiry,
bool allowed,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IERC20 {
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v2;
interface IUniV3 {
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
function token0() external view returns (address);
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
pragma abicoder v2;
interface IWETH {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount)
external
returns (bool);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(
address src,
address dst,
uint256 wad
) external returns (bool);
function deposit() external payable;
function withdraw(uint256 wad) external;
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly {
codehash := extcodehash(account)
}
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account)
internal
pure
returns (address payable)
{
return payable(account);
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
}
/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library RevertReasonForwarder {
function reRevert() internal pure {
// bubble up revert reason from latest external call
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
}
}/// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./SafeMath.sol";
import "./Address.sol";
import "./RevertReasonForwarder.sol";
import "../interfaces/IERC20.sol";
import "../interfaces/IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
// File @1inch/solidity-utils/contracts/libraries/SafeERC20.sol@v2.1.1
library SafeERC20 {
error SafeTransferFailed();
error SafeTransferFromFailed();
error ForceApproveFailed();
error SafeIncreaseAllowanceFailed();
error SafeDecreaseAllowanceFailed();
error SafePermitBadLength();
// Ensures method do not revert or return boolean `true`, admits call to non-smart-contract
function safeTransferFrom(IERC20 token, address from, address to, uint256 amount) internal {
bytes4 selector = token.transferFrom.selector;
bool success;
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), from)
mstore(add(data, 0x24), to)
mstore(add(data, 0x44), amount)
success := call(gas(), token, 0, data, 100, 0x0, 0x20)
if success {
switch returndatasize()
case 0 { success := gt(extcodesize(token), 0) }
default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
}
}
if (!success) revert SafeTransferFromFailed();
}
// Ensures method do not revert or return boolean `true`, admits call to non-smart-contract
function safeTransfer(IERC20 token, address to, uint256 value) internal {
if (!_makeCall(token, token.transfer.selector, to, value)) {
revert SafeTransferFailed();
}
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
forceApprove(token, spender, value);
}
// If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry
function forceApprove(IERC20 token, address spender, uint256 value) internal {
if (!_makeCall(token, token.approve.selector, spender, value)) {
if (!_makeCall(token, token.approve.selector, spender, 0) ||
!_makeCall(token, token.approve.selector, spender, value))
{
revert ForceApproveFailed();
}
}
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
forceApprove(token, spender, allowance + value);
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 allowance = token.allowance(address(this), spender);
if (value > allowance) revert SafeDecreaseAllowanceFailed();
forceApprove(token, spender, allowance - value);
}
function safePermit(IERC20 token, bytes calldata permit) internal {
bool success;
if (permit.length == 32 * 7) {
success = _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
} else if (permit.length == 32 * 8) {
success = _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
} else {
revert SafePermitBadLength();
}
if (!success) RevertReasonForwarder.reRevert();
}
function _makeCall(IERC20 token, bytes4 selector, address to, uint256 amount) private returns(bool success) {
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let data := mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), to)
mstore(add(data, 0x24), amount)
success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
if success {
switch returndatasize()
case 0 { success := gt(extcodesize(token), 0) }
default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
}
}
}
function _makeCalldataCall(IERC20 token, bytes4 selector, bytes calldata args) private returns(bool success) {
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
let len := add(4, args.length)
let data := mload(0x40)
mstore(data, selector)
calldatacopy(add(data, 0x04), args.offset, args.length)
success := call(gas(), token, 0, data, len, 0x0, 0x20)
if success {
switch returndatasize()
case 0 { success := gt(extcodesize(token), 0) }
default { success := and(gt(returndatasize(), 31), eq(mload(0), 1)) }
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library SafeMath {
uint256 constant WAD = 10**18;
uint256 constant RAY = 10**27;
function wad() public pure returns (uint256) {
return WAD;
}
function ray() public pure returns (uint256) {
return RAY;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a <= b ? a : b;
}
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
function sqrt(uint256 a) internal pure returns (uint256 b) {
if (a > 3) {
b = a;
uint256 x = a / 2 + 1;
while (x < b) {
b = x;
x = (a / x + x) / 2;
}
} else if (a != 0) {
b = 1;
}
}
function wmul(uint256 a, uint256 b) internal pure returns (uint256) {
return mul(a, b) / WAD;
}
function wmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
return add(mul(a, b), WAD / 2) / WAD;
}
function rmul(uint256 a, uint256 b) internal pure returns (uint256) {
return mul(a, b) / RAY;
}
function rmulRound(uint256 a, uint256 b) internal pure returns (uint256) {
return add(mul(a, b), RAY / 2) / RAY;
}
function wdiv(uint256 a, uint256 b) internal pure returns (uint256) {
return div(mul(a, WAD), b);
}
function wdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
return add(mul(a, WAD), b / 2) / b;
}
function rdiv(uint256 a, uint256 b) internal pure returns (uint256) {
return div(mul(a, RAY), b);
}
function rdivRound(uint256 a, uint256 b) internal pure returns (uint256) {
return add(mul(a, RAY), b / 2) / b;
}
function wpow(uint256 x, uint256 n) internal pure returns (uint256) {
uint256 result = WAD;
while (n > 0) {
if (n % 2 != 0) {
result = wmul(result, x);
}
x = wmul(x, x);
n /= 2;
}
return result;
}
function rpow(uint256 x, uint256 n) internal pure returns (uint256) {
uint256 result = RAY;
while (n > 0) {
if (n % 2 != 0) {
result = rmul(result, x);
}
x = rmul(x, x);
n /= 2;
}
return result;
}
function divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 quotient = div(a, b);
uint256 remainder = a - quotient * b;
if (remainder > 0) {
return quotient + 1;
} else {
return quotient;
}
}
}
File 3 of 7: UniswapV3Pool
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.7.6;
import './interfaces/IUniswapV3Pool.sol';
import './NoDelegateCall.sol';
import './libraries/LowGasSafeMath.sol';
import './libraries/SafeCast.sol';
import './libraries/Tick.sol';
import './libraries/TickBitmap.sol';
import './libraries/Position.sol';
import './libraries/Oracle.sol';
import './libraries/FullMath.sol';
import './libraries/FixedPoint128.sol';
import './libraries/TransferHelper.sol';
import './libraries/TickMath.sol';
import './libraries/LiquidityMath.sol';
import './libraries/SqrtPriceMath.sol';
import './libraries/SwapMath.sol';
import './interfaces/IUniswapV3PoolDeployer.sol';
import './interfaces/IUniswapV3Factory.sol';
import './interfaces/IERC20Minimal.sol';
import './interfaces/callback/IUniswapV3MintCallback.sol';
import './interfaces/callback/IUniswapV3SwapCallback.sol';
import './interfaces/callback/IUniswapV3FlashCallback.sol';
contract UniswapV3Pool is IUniswapV3Pool, NoDelegateCall {
using LowGasSafeMath for uint256;
using LowGasSafeMath for int256;
using SafeCast for uint256;
using SafeCast for int256;
using Tick for mapping(int24 => Tick.Info);
using TickBitmap for mapping(int16 => uint256);
using Position for mapping(bytes32 => Position.Info);
using Position for Position.Info;
using Oracle for Oracle.Observation[65535];
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override factory;
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override token0;
/// @inheritdoc IUniswapV3PoolImmutables
address public immutable override token1;
/// @inheritdoc IUniswapV3PoolImmutables
uint24 public immutable override fee;
/// @inheritdoc IUniswapV3PoolImmutables
int24 public immutable override tickSpacing;
/// @inheritdoc IUniswapV3PoolImmutables
uint128 public immutable override maxLiquidityPerTick;
struct Slot0 {
// the current price
uint160 sqrtPriceX96;
// the current tick
int24 tick;
// the most-recently updated index of the observations array
uint16 observationIndex;
// the current maximum number of observations that are being stored
uint16 observationCardinality;
// the next maximum number of observations to store, triggered in observations.write
uint16 observationCardinalityNext;
// the current protocol fee as a percentage of the swap fee taken on withdrawal
// represented as an integer denominator (1/x)%
uint8 feeProtocol;
// whether the pool is locked
bool unlocked;
}
/// @inheritdoc IUniswapV3PoolState
Slot0 public override slot0;
/// @inheritdoc IUniswapV3PoolState
uint256 public override feeGrowthGlobal0X128;
/// @inheritdoc IUniswapV3PoolState
uint256 public override feeGrowthGlobal1X128;
// accumulated protocol fees in token0/token1 units
struct ProtocolFees {
uint128 token0;
uint128 token1;
}
/// @inheritdoc IUniswapV3PoolState
ProtocolFees public override protocolFees;
/// @inheritdoc IUniswapV3PoolState
uint128 public override liquidity;
/// @inheritdoc IUniswapV3PoolState
mapping(int24 => Tick.Info) public override ticks;
/// @inheritdoc IUniswapV3PoolState
mapping(int16 => uint256) public override tickBitmap;
/// @inheritdoc IUniswapV3PoolState
mapping(bytes32 => Position.Info) public override positions;
/// @inheritdoc IUniswapV3PoolState
Oracle.Observation[65535] public override observations;
/// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
/// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
/// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
modifier lock() {
require(slot0.unlocked, 'LOK');
slot0.unlocked = false;
_;
slot0.unlocked = true;
}
/// @dev Prevents calling a function from anyone except the address returned by IUniswapV3Factory#owner()
modifier onlyFactoryOwner() {
require(msg.sender == IUniswapV3Factory(factory).owner());
_;
}
constructor() {
int24 _tickSpacing;
(factory, token0, token1, fee, _tickSpacing) = IUniswapV3PoolDeployer(msg.sender).parameters();
tickSpacing = _tickSpacing;
maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
}
/// @dev Common checks for valid tick inputs.
function checkTicks(int24 tickLower, int24 tickUpper) private pure {
require(tickLower < tickUpper, 'TLU');
require(tickLower >= TickMath.MIN_TICK, 'TLM');
require(tickUpper <= TickMath.MAX_TICK, 'TUM');
}
/// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
function _blockTimestamp() internal view virtual returns (uint32) {
return uint32(block.timestamp); // truncation is desired
}
/// @dev Get the pool's balance of token0
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance0() private view returns (uint256) {
(bool success, bytes memory data) =
token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @dev Get the pool's balance of token1
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance1() private view returns (uint256) {
(bool success, bytes memory data) =
token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @inheritdoc IUniswapV3PoolDerivedState
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
override
noDelegateCall
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
)
{
checkTicks(tickLower, tickUpper);
int56 tickCumulativeLower;
int56 tickCumulativeUpper;
uint160 secondsPerLiquidityOutsideLowerX128;
uint160 secondsPerLiquidityOutsideUpperX128;
uint32 secondsOutsideLower;
uint32 secondsOutsideUpper;
{
Tick.Info storage lower = ticks[tickLower];
Tick.Info storage upper = ticks[tickUpper];
bool initializedLower;
(tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
lower.tickCumulativeOutside,
lower.secondsPerLiquidityOutsideX128,
lower.secondsOutside,
lower.initialized
);
require(initializedLower);
bool initializedUpper;
(tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
upper.tickCumulativeOutside,
upper.secondsPerLiquidityOutsideX128,
upper.secondsOutside,
upper.initialized
);
require(initializedUpper);
}
Slot0 memory _slot0 = slot0;
if (_slot0.tick < tickLower) {
return (
tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
secondsOutsideLower - secondsOutsideUpper
);
} else if (_slot0.tick < tickUpper) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
_slot0.tick,
_slot0.observationIndex,
liquidity,
_slot0.observationCardinality
);
return (
tickCumulative - tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityCumulativeX128 -
secondsPerLiquidityOutsideLowerX128 -
secondsPerLiquidityOutsideUpperX128,
time - secondsOutsideLower - secondsOutsideUpper
);
} else {
return (
tickCumulativeUpper - tickCumulativeLower,
secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
secondsOutsideUpper - secondsOutsideLower
);
}
}
/// @inheritdoc IUniswapV3PoolDerivedState
function observe(uint32[] calldata secondsAgos)
external
view
override
noDelegateCall
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
{
return
observations.observe(
_blockTimestamp(),
secondsAgos,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
}
/// @inheritdoc IUniswapV3PoolActions
function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
external
override
lock
noDelegateCall
{
uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
uint16 observationCardinalityNextNew =
observations.grow(observationCardinalityNextOld, observationCardinalityNext);
slot0.observationCardinalityNext = observationCardinalityNextNew;
if (observationCardinalityNextOld != observationCardinalityNextNew)
emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev not locked because it initializes unlocked
function initialize(uint160 sqrtPriceX96) external override {
require(slot0.sqrtPriceX96 == 0, 'AI');
int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
slot0 = Slot0({
sqrtPriceX96: sqrtPriceX96,
tick: tick,
observationIndex: 0,
observationCardinality: cardinality,
observationCardinalityNext: cardinalityNext,
feeProtocol: 0,
unlocked: true
});
emit Initialize(sqrtPriceX96, tick);
}
struct ModifyPositionParams {
// the address that owns the position
address owner;
// the lower and upper tick of the position
int24 tickLower;
int24 tickUpper;
// any change in liquidity
int128 liquidityDelta;
}
/// @dev Effect some changes to a position
/// @param params the position details and the change to the position's liquidity to effect
/// @return position a storage pointer referencing the position with the given owner and tick range
/// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
/// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
function _modifyPosition(ModifyPositionParams memory params)
private
noDelegateCall
returns (
Position.Info storage position,
int256 amount0,
int256 amount1
)
{
checkTicks(params.tickLower, params.tickUpper);
Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
position = _updatePosition(
params.owner,
params.tickLower,
params.tickUpper,
params.liquidityDelta,
_slot0.tick
);
if (params.liquidityDelta != 0) {
if (_slot0.tick < params.tickLower) {
// current tick is below the passed range; liquidity can only become in range by crossing from left to
// right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
amount0 = SqrtPriceMath.getAmount0Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
} else if (_slot0.tick < params.tickUpper) {
// current tick is inside the passed range
uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
_slot0.observationIndex,
_blockTimestamp(),
_slot0.tick,
liquidityBefore,
_slot0.observationCardinality,
_slot0.observationCardinalityNext
);
amount0 = SqrtPriceMath.getAmount0Delta(
_slot0.sqrtPriceX96,
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
_slot0.sqrtPriceX96,
params.liquidityDelta
);
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
} else {
// current tick is above the passed range; liquidity can only become in range by crossing from right to
// left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
}
}
}
/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
/// @param tickLower the lower tick of the position's tick range
/// @param tickUpper the upper tick of the position's tick range
/// @param tick the current tick, passed to avoid sloads
function _updatePosition(
address owner,
int24 tickLower,
int24 tickUpper,
int128 liquidityDelta,
int24 tick
) private returns (Position.Info storage position) {
position = positions.get(owner, tickLower, tickUpper);
uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
// if we need to update the ticks, do it
bool flippedLower;
bool flippedUpper;
if (liquidityDelta != 0) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
flippedLower = ticks.update(
tickLower,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
false,
maxLiquidityPerTick
);
flippedUpper = ticks.update(
tickUpper,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
true,
maxLiquidityPerTick
);
if (flippedLower) {
tickBitmap.flipTick(tickLower, tickSpacing);
}
if (flippedUpper) {
tickBitmap.flipTick(tickUpper, tickSpacing);
}
}
(uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
// clear any tick data that is no longer needed
if (liquidityDelta < 0) {
if (flippedLower) {
ticks.clear(tickLower);
}
if (flippedUpper) {
ticks.clear(tickUpper);
}
}
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external override lock returns (uint256 amount0, uint256 amount1) {
require(amount > 0);
(, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: recipient,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: int256(amount).toInt128()
})
);
amount0 = uint256(amount0Int);
amount1 = uint256(amount1Int);
uint256 balance0Before;
uint256 balance1Before;
if (amount0 > 0) balance0Before = balance0();
if (amount1 > 0) balance1Before = balance1();
IUniswapV3MintCallback(msg.sender).uniswapV3MintCallback(amount0, amount1, data);
if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
}
/// @inheritdoc IUniswapV3PoolActions
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock returns (uint128 amount0, uint128 amount1) {
// we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
if (amount0 > 0) {
position.tokensOwed0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
position.tokensOwed1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
}
/// @inheritdoc IUniswapV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external override lock returns (uint256 amount0, uint256 amount1) {
(Position.Info storage position, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: msg.sender,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: -int256(amount).toInt128()
})
);
amount0 = uint256(-amount0Int);
amount1 = uint256(-amount1Int);
if (amount0 > 0 || amount1 > 0) {
(position.tokensOwed0, position.tokensOwed1) = (
position.tokensOwed0 + uint128(amount0),
position.tokensOwed1 + uint128(amount1)
);
}
emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
}
struct SwapCache {
// the protocol fee for the input token
uint8 feeProtocol;
// liquidity at the beginning of the swap
uint128 liquidityStart;
// the timestamp of the current block
uint32 blockTimestamp;
// the current value of the tick accumulator, computed only if we cross an initialized tick
int56 tickCumulative;
// the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
uint160 secondsPerLiquidityCumulativeX128;
// whether we've computed and cached the above two accumulators
bool computedLatestObservation;
}
// the top level state of the swap, the results of which are recorded in storage at the end
struct SwapState {
// the amount remaining to be swapped in/out of the input/output asset
int256 amountSpecifiedRemaining;
// the amount already swapped out/in of the output/input asset
int256 amountCalculated;
// current sqrt(price)
uint160 sqrtPriceX96;
// the tick associated with the current price
int24 tick;
// the global fee growth of the input token
uint256 feeGrowthGlobalX128;
// amount of input token paid as protocol fee
uint128 protocolFee;
// the current liquidity in range
uint128 liquidity;
}
struct StepComputations {
// the price at the beginning of the step
uint160 sqrtPriceStartX96;
// the next tick to swap to from the current tick in the swap direction
int24 tickNext;
// whether tickNext is initialized or not
bool initialized;
// sqrt(price) for the next tick (1/0)
uint160 sqrtPriceNextX96;
// how much is being swapped in in this step
uint256 amountIn;
// how much is being swapped out
uint256 amountOut;
// how much fee is being paid in
uint256 feeAmount;
}
/// @inheritdoc IUniswapV3PoolActions
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
require(amountSpecified != 0, 'AS');
Slot0 memory slot0Start = slot0;
require(slot0Start.unlocked, 'LOK');
require(
zeroForOne
? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
: sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
'SPL'
);
slot0.unlocked = false;
SwapCache memory cache =
SwapCache({
liquidityStart: liquidity,
blockTimestamp: _blockTimestamp(),
feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
secondsPerLiquidityCumulativeX128: 0,
tickCumulative: 0,
computedLatestObservation: false
});
bool exactInput = amountSpecified > 0;
SwapState memory state =
SwapState({
amountSpecifiedRemaining: amountSpecified,
amountCalculated: 0,
sqrtPriceX96: slot0Start.sqrtPriceX96,
tick: slot0Start.tick,
feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
protocolFee: 0,
liquidity: cache.liquidityStart
});
// continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
StepComputations memory step;
step.sqrtPriceStartX96 = state.sqrtPriceX96;
(step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
state.tick,
tickSpacing,
zeroForOne
);
// ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
if (step.tickNext < TickMath.MIN_TICK) {
step.tickNext = TickMath.MIN_TICK;
} else if (step.tickNext > TickMath.MAX_TICK) {
step.tickNext = TickMath.MAX_TICK;
}
// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
if (exactInput) {
state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
state.amountSpecifiedRemaining += step.amountOut.toInt256();
state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
// update global fee tracker
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
// if the tick is initialized, run the tick transition
if (step.initialized) {
// check for the placeholder value, which we replace with the actual value the first time the swap
// crosses an initialized tick
if (!cache.computedLatestObservation) {
(cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
cache.blockTimestamp,
0,
slot0Start.tick,
slot0Start.observationIndex,
cache.liquidityStart,
slot0Start.observationCardinality
);
cache.computedLatestObservation = true;
}
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
cache.secondsPerLiquidityCumulativeX128,
cache.tickCumulative,
cache.blockTimestamp
);
// if we're moving leftward, we interpret liquidityNet as the opposite sign
// safe because liquidityNet cannot be type(int128).min
if (zeroForOne) liquidityNet = -liquidityNet;
state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
}
state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
// recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
}
// update tick and write an oracle entry if the tick change
if (state.tick != slot0Start.tick) {
(uint16 observationIndex, uint16 observationCardinality) =
observations.write(
slot0Start.observationIndex,
cache.blockTimestamp,
slot0Start.tick,
cache.liquidityStart,
slot0Start.observationCardinality,
slot0Start.observationCardinalityNext
);
(slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
state.sqrtPriceX96,
state.tick,
observationIndex,
observationCardinality
);
} else {
// otherwise just update the price
slot0.sqrtPriceX96 = state.sqrtPriceX96;
}
// update liquidity if it changed
if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
// update fee growth global and, if necessary, protocol fees
// overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
if (zeroForOne) {
feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
} else {
feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
}
(amount0, amount1) = zeroForOne == exactInput
? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
: (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
// do the transfers and collect payment
if (zeroForOne) {
if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
uint256 balance0Before = balance0();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
} else {
if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
uint256 balance1Before = balance1();
IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);
require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
}
emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
slot0.unlocked = true;
}
/// @inheritdoc IUniswapV3PoolActions
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external override lock noDelegateCall {
uint128 _liquidity = liquidity;
require(_liquidity > 0, 'L');
uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
uint256 balance0Before = balance0();
uint256 balance1Before = balance1();
if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
IUniswapV3FlashCallback(msg.sender).uniswapV3FlashCallback(fee0, fee1, data);
uint256 balance0After = balance0();
uint256 balance1After = balance1();
require(balance0Before.add(fee0) <= balance0After, 'F0');
require(balance1Before.add(fee1) <= balance1After, 'F1');
// sub is safe because we know balanceAfter is gt balanceBefore by at least fee
uint256 paid0 = balance0After - balance0Before;
uint256 paid1 = balance1After - balance1Before;
if (paid0 > 0) {
uint8 feeProtocol0 = slot0.feeProtocol % 16;
uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
}
if (paid1 > 0) {
uint8 feeProtocol1 = slot0.feeProtocol >> 4;
uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
}
emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
}
/// @inheritdoc IUniswapV3PoolOwnerActions
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
require(
(feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
(feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
);
uint8 feeProtocolOld = slot0.feeProtocol;
slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
}
/// @inheritdoc IUniswapV3PoolOwnerActions
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
if (amount0 > 0) {
if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
protocolFees.token0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
protocolFees.token1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit CollectProtocol(msg.sender, recipient, amount0, amount1);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './pool/IUniswapV3PoolImmutables.sol';
import './pool/IUniswapV3PoolState.sol';
import './pool/IUniswapV3PoolDerivedState.sol';
import './pool/IUniswapV3PoolActions.sol';
import './pool/IUniswapV3PoolOwnerActions.sol';
import './pool/IUniswapV3PoolEvents.sol';
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.7.6;
/// @title Prevents delegatecall to a contract
/// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
abstract contract NoDelegateCall {
/// @dev The original address of this contract
address private immutable original;
constructor() {
// Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
// In other words, this variable won't change when it's checked at runtime.
original = address(this);
}
/// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
/// and the use of immutable means the address bytes are copied in every place the modifier is used.
function checkNotDelegateCall() private view {
require(address(this) == original);
}
/// @notice Prevents delegatecall into the modified method
modifier noDelegateCall() {
checkNotDelegateCall();
_;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;
/// @title Optimized overflow and underflow safe math operations
/// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
library LowGasSafeMath {
/// @notice Returns x + y, reverts if sum overflows uint256
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x + y) >= x);
}
/// @notice Returns x - y, reverts if underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x - y) <= x);
}
/// @notice Returns x * y, reverts if overflows
/// @param x The multiplicand
/// @param y The multiplier
/// @return z The product of x and y
function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
require(x == 0 || (z = x * y) / x == y);
}
/// @notice Returns x + y, reverts if overflows or underflows
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x + y) >= x == (y >= 0));
}
/// @notice Returns x - y, reverts if overflows or underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x - y) <= x == (y >= 0));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
/// @notice Cast a uint256 to a uint160, revert on overflow
/// @param y The uint256 to be downcasted
/// @return z The downcasted integer, now type uint160
function toUint160(uint256 y) internal pure returns (uint160 z) {
require((z = uint160(y)) == y);
}
/// @notice Cast a int256 to a int128, revert on overflow or underflow
/// @param y The int256 to be downcasted
/// @return z The downcasted integer, now type int128
function toInt128(int256 y) internal pure returns (int128 z) {
require((z = int128(y)) == y);
}
/// @notice Cast a uint256 to a int256, revert on overflow
/// @param y The uint256 to be casted
/// @return z The casted integer, now type int256
function toInt256(uint256 y) internal pure returns (int256 z) {
require(y < 2**255);
z = int256(y);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './TickMath.sol';
import './LiquidityMath.sol';
/// @title Tick
/// @notice Contains functions for managing tick processes and relevant calculations
library Tick {
using LowGasSafeMath for int256;
using SafeCast for int256;
// info stored for each initialized individual tick
struct Info {
// the total position liquidity that references this tick
uint128 liquidityGross;
// amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
int128 liquidityNet;
// fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint256 feeGrowthOutside0X128;
uint256 feeGrowthOutside1X128;
// the cumulative tick value on the other side of the tick
int56 tickCumulativeOutside;
// the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint160 secondsPerLiquidityOutsideX128;
// the seconds spent on the other side of the tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint32 secondsOutside;
// true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
// these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
bool initialized;
}
/// @notice Derives max liquidity per tick from given tick spacing
/// @dev Executed within the pool constructor
/// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
/// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
/// @return The max liquidity per tick
function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
return type(uint128).max / numTicks;
}
/// @notice Retrieves fee growth data
/// @param self The mapping containing all tick information for initialized ticks
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @param tickCurrent The current tick
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function getFeeGrowthInside(
mapping(int24 => Tick.Info) storage self,
int24 tickLower,
int24 tickUpper,
int24 tickCurrent,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128
) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
Info storage lower = self[tickLower];
Info storage upper = self[tickUpper];
// calculate fee growth below
uint256 feeGrowthBelow0X128;
uint256 feeGrowthBelow1X128;
if (tickCurrent >= tickLower) {
feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
} else {
feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
}
// calculate fee growth above
uint256 feeGrowthAbove0X128;
uint256 feeGrowthAbove1X128;
if (tickCurrent < tickUpper) {
feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
} else {
feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
}
feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
}
/// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The tick that will be updated
/// @param tickCurrent The current tick
/// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
/// @param time The current block timestamp cast to a uint32
/// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
/// @param maxLiquidity The maximum liquidity allocation for a single tick
/// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
function update(
mapping(int24 => Tick.Info) storage self,
int24 tick,
int24 tickCurrent,
int128 liquidityDelta,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time,
bool upper,
uint128 maxLiquidity
) internal returns (bool flipped) {
Tick.Info storage info = self[tick];
uint128 liquidityGrossBefore = info.liquidityGross;
uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
require(liquidityGrossAfter <= maxLiquidity, 'LO');
flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
if (liquidityGrossBefore == 0) {
// by convention, we assume that all growth before a tick was initialized happened _below_ the tick
if (tick <= tickCurrent) {
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
info.tickCumulativeOutside = tickCumulative;
info.secondsOutside = time;
}
info.initialized = true;
}
info.liquidityGross = liquidityGrossAfter;
// when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
info.liquidityNet = upper
? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
: int256(info.liquidityNet).add(liquidityDelta).toInt128();
}
/// @notice Clears tick data
/// @param self The mapping containing all initialized tick information for initialized ticks
/// @param tick The tick that will be cleared
function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
delete self[tick];
}
/// @notice Transitions to next tick as needed by price movement
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The destination tick of the transition
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
/// @param time The current block.timestamp
/// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
function cross(
mapping(int24 => Tick.Info) storage self,
int24 tick,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time
) internal returns (int128 liquidityNet) {
Tick.Info storage info = self[tick];
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
info.secondsOutside = time - info.secondsOutside;
liquidityNet = info.liquidityNet;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './BitMath.sol';
/// @title Packed tick initialized state library
/// @notice Stores a packed mapping of tick index to its initialized state
/// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
library TickBitmap {
/// @notice Computes the position in the mapping where the initialized bit for a tick lives
/// @param tick The tick for which to compute the position
/// @return wordPos The key in the mapping containing the word in which the bit is stored
/// @return bitPos The bit position in the word where the flag is stored
function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
wordPos = int16(tick >> 8);
bitPos = uint8(tick % 256);
}
/// @notice Flips the initialized state for a given tick from false to true, or vice versa
/// @param self The mapping in which to flip the tick
/// @param tick The tick to flip
/// @param tickSpacing The spacing between usable ticks
function flipTick(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing
) internal {
require(tick % tickSpacing == 0); // ensure that the tick is spaced
(int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
uint256 mask = 1 << bitPos;
self[wordPos] ^= mask;
}
/// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
/// to the left (less than or equal to) or right (greater than) of the given tick
/// @param self The mapping in which to compute the next initialized tick
/// @param tick The starting tick
/// @param tickSpacing The spacing between usable ticks
/// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
/// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
/// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
function nextInitializedTickWithinOneWord(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing,
bool lte
) internal view returns (int24 next, bool initialized) {
int24 compressed = tick / tickSpacing;
if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
if (lte) {
(int16 wordPos, uint8 bitPos) = position(compressed);
// all the 1s at or to the right of the current bitPos
uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
: (compressed - int24(bitPos)) * tickSpacing;
} else {
// start from the word of the next tick, since the current tick state doesn't matter
(int16 wordPos, uint8 bitPos) = position(compressed + 1);
// all the 1s at or to the left of the bitPos
uint256 mask = ~((1 << bitPos) - 1);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the left of the current tick, return leftmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
: (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './FullMath.sol';
import './FixedPoint128.sol';
import './LiquidityMath.sol';
/// @title Position
/// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
/// @dev Positions store additional state for tracking fees owed to the position
library Position {
// info stored for each user's position
struct Info {
// the amount of liquidity owned by this position
uint128 liquidity;
// fee growth per unit of liquidity as of the last update to liquidity or fees owed
uint256 feeGrowthInside0LastX128;
uint256 feeGrowthInside1LastX128;
// the fees owed to the position owner in token0/token1
uint128 tokensOwed0;
uint128 tokensOwed1;
}
/// @notice Returns the Info struct of a position, given an owner and position boundaries
/// @param self The mapping containing all user positions
/// @param owner The address of the position owner
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @return position The position info struct of the given owners' position
function get(
mapping(bytes32 => Info) storage self,
address owner,
int24 tickLower,
int24 tickUpper
) internal view returns (Position.Info storage position) {
position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
}
/// @notice Credits accumulated fees to a user's position
/// @param self The individual position to update
/// @param liquidityDelta The change in pool liquidity as a result of the position update
/// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function update(
Info storage self,
int128 liquidityDelta,
uint256 feeGrowthInside0X128,
uint256 feeGrowthInside1X128
) internal {
Info memory _self = self;
uint128 liquidityNext;
if (liquidityDelta == 0) {
require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
liquidityNext = _self.liquidity;
} else {
liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
}
// calculate accumulated fees
uint128 tokensOwed0 =
uint128(
FullMath.mulDiv(
feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
uint128 tokensOwed1 =
uint128(
FullMath.mulDiv(
feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
// update the position
if (liquidityDelta != 0) self.liquidity = liquidityNext;
self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
if (tokensOwed0 > 0 || tokensOwed1 > 0) {
// overflow is acceptable, have to withdraw before you hit type(uint128).max fees
self.tokensOwed0 += tokensOwed0;
self.tokensOwed1 += tokensOwed1;
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
/// @title Oracle
/// @notice Provides price and liquidity data useful for a wide variety of system designs
/// @dev Instances of stored oracle data, "observations", are collected in the oracle array
/// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
/// maximum length of the oracle array. New slots will be added when the array is fully populated.
/// Observations are overwritten when the full length of the oracle array is populated.
/// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
library Oracle {
struct Observation {
// the block timestamp of the observation
uint32 blockTimestamp;
// the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
int56 tickCumulative;
// the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
uint160 secondsPerLiquidityCumulativeX128;
// whether or not the observation is initialized
bool initialized;
}
/// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
/// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
/// @param last The specified observation to be transformed
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @return Observation The newly populated observation
function transform(
Observation memory last,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity
) private pure returns (Observation memory) {
uint32 delta = blockTimestamp - last.blockTimestamp;
return
Observation({
blockTimestamp: blockTimestamp,
tickCumulative: last.tickCumulative + int56(tick) * delta,
secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
initialized: true
});
}
/// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
/// @param self The stored oracle array
/// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
/// @return cardinality The number of populated elements in the oracle array
/// @return cardinalityNext The new length of the oracle array, independent of population
function initialize(Observation[65535] storage self, uint32 time)
internal
returns (uint16 cardinality, uint16 cardinalityNext)
{
self[0] = Observation({
blockTimestamp: time,
tickCumulative: 0,
secondsPerLiquidityCumulativeX128: 0,
initialized: true
});
return (1, 1);
}
/// @notice Writes an oracle observation to the array
/// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
/// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
/// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
/// @param self The stored oracle array
/// @param index The index of the observation that was most recently written to the observations array
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @param cardinality The number of populated elements in the oracle array
/// @param cardinalityNext The new length of the oracle array, independent of population
/// @return indexUpdated The new index of the most recently written element in the oracle array
/// @return cardinalityUpdated The new cardinality of the oracle array
function write(
Observation[65535] storage self,
uint16 index,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity,
uint16 cardinality,
uint16 cardinalityNext
) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
Observation memory last = self[index];
// early return if we've already written an observation this block
if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
// if the conditions are right, we can bump the cardinality
if (cardinalityNext > cardinality && index == (cardinality - 1)) {
cardinalityUpdated = cardinalityNext;
} else {
cardinalityUpdated = cardinality;
}
indexUpdated = (index + 1) % cardinalityUpdated;
self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
}
/// @notice Prepares the oracle array to store up to `next` observations
/// @param self The stored oracle array
/// @param current The current next cardinality of the oracle array
/// @param next The proposed next cardinality which will be populated in the oracle array
/// @return next The next cardinality which will be populated in the oracle array
function grow(
Observation[65535] storage self,
uint16 current,
uint16 next
) internal returns (uint16) {
require(current > 0, 'I');
// no-op if the passed next value isn't greater than the current next value
if (next <= current) return current;
// store in each slot to prevent fresh SSTOREs in swaps
// this data will not be used because the initialized boolean is still false
for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
return next;
}
/// @notice comparator for 32-bit timestamps
/// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
/// @param time A timestamp truncated to 32 bits
/// @param a A comparison timestamp from which to determine the relative position of `time`
/// @param b From which to determine the relative position of `time`
/// @return bool Whether `a` is chronologically <= `b`
function lte(
uint32 time,
uint32 a,
uint32 b
) private pure returns (bool) {
// if there hasn't been overflow, no need to adjust
if (a <= time && b <= time) return a <= b;
uint256 aAdjusted = a > time ? a : a + 2**32;
uint256 bAdjusted = b > time ? b : b + 2**32;
return aAdjusted <= bAdjusted;
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
/// The result may be the same observation, or adjacent observations.
/// @dev The answer must be contained in the array, used when the target is located within the stored observation
/// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param index The index of the observation that was most recently written to the observations array
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation recorded before, or at, the target
/// @return atOrAfter The observation recorded at, or after, the target
function binarySearch(
Observation[65535] storage self,
uint32 time,
uint32 target,
uint16 index,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
uint256 l = (index + 1) % cardinality; // oldest observation
uint256 r = l + cardinality - 1; // newest observation
uint256 i;
while (true) {
i = (l + r) / 2;
beforeOrAt = self[i % cardinality];
// we've landed on an uninitialized tick, keep searching higher (more recently)
if (!beforeOrAt.initialized) {
l = i + 1;
continue;
}
atOrAfter = self[(i + 1) % cardinality];
bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
// check if we've found the answer!
if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
if (!targetAtOrAfter) r = i - 1;
else l = i + 1;
}
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
/// @dev Assumes there is at least 1 initialized observation.
/// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param tick The active tick at the time of the returned or simulated observation
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The total pool liquidity at the time of the call
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation which occurred at, or before, the given timestamp
/// @return atOrAfter The observation which occurred at, or after, the given timestamp
function getSurroundingObservations(
Observation[65535] storage self,
uint32 time,
uint32 target,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
// optimistically set before to the newest observation
beforeOrAt = self[index];
// if the target is chronologically at or after the newest observation, we can early return
if (lte(time, beforeOrAt.blockTimestamp, target)) {
if (beforeOrAt.blockTimestamp == target) {
// if newest observation equals target, we're in the same block, so we can ignore atOrAfter
return (beforeOrAt, atOrAfter);
} else {
// otherwise, we need to transform
return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
}
}
// now, set before to the oldest observation
beforeOrAt = self[(index + 1) % cardinality];
if (!beforeOrAt.initialized) beforeOrAt = self[0];
// ensure that the target is chronologically at or after the oldest observation
require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
// if we've reached this point, we have to binary search
return binarySearch(self, time, target, index, cardinality);
}
/// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
/// 0 may be passed as `secondsAgo' to return the current cumulative values.
/// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
/// at exactly the timestamp between the two observations.
/// @param self The stored oracle array
/// @param time The current block timestamp
/// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
function observeSingle(
Observation[65535] storage self,
uint32 time,
uint32 secondsAgo,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
if (secondsAgo == 0) {
Observation memory last = self[index];
if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
}
uint32 target = time - secondsAgo;
(Observation memory beforeOrAt, Observation memory atOrAfter) =
getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
if (target == beforeOrAt.blockTimestamp) {
// we're at the left boundary
return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
} else if (target == atOrAfter.blockTimestamp) {
// we're at the right boundary
return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
} else {
// we're in the middle
uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
uint32 targetDelta = target - beforeOrAt.blockTimestamp;
return (
beforeOrAt.tickCumulative +
((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
targetDelta,
beforeOrAt.secondsPerLiquidityCumulativeX128 +
uint160(
(uint256(
atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
) * targetDelta) / observationTimeDelta
)
);
}
}
/// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
/// @dev Reverts if `secondsAgos` > oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
function observe(
Observation[65535] storage self,
uint32 time,
uint32[] memory secondsAgos,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
require(cardinality > 0, 'I');
tickCumulatives = new int56[](secondsAgos.length);
secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
for (uint256 i = 0; i < secondsAgos.length; i++) {
(tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
self,
time,
secondsAgos[i],
tick,
index,
liquidity,
cardinality
);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = -denominator & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint128
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
library FixedPoint128 {
uint256 internal constant Q128 = 0x100000000000000000000000000000000;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '../interfaces/IERC20Minimal.sol';
/// @title TransferHelper
/// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
library TransferHelper {
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Calls transfer on token contract, errors with TF if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) =
token.call(abi.encodeWithSelector(IERC20Minimal.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'TF');
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= uint256(MAX_TICK), 'T');
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for liquidity
library LiquidityMath {
/// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
/// @param x The liquidity before change
/// @param y The delta by which liquidity should be changed
/// @return z The liquidity delta
function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
if (y < 0) {
require((z = x - uint128(-y)) < x, 'LS');
} else {
require((z = x + uint128(y)) >= x, 'LA');
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './FullMath.sol';
import './UnsafeMath.sol';
import './FixedPoint96.sol';
/// @title Functions based on Q64.96 sqrt price and liquidity
/// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
library SqrtPriceMath {
using LowGasSafeMath for uint256;
using SafeCast for uint256;
/// @notice Gets the next sqrt price given a delta of token0
/// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
/// price less in order to not send too much output.
/// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
/// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
/// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token0 to add or remove from virtual reserves
/// @param add Whether to add or remove the amount of token0
/// @return The price after adding or removing amount, depending on add
function getNextSqrtPriceFromAmount0RoundingUp(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
if (amount == 0) return sqrtPX96;
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
if (add) {
uint256 product;
if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
uint256 denominator = numerator1 + product;
if (denominator >= numerator1)
// always fits in 160 bits
return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
}
return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
} else {
uint256 product;
// if the product overflows, we know the denominator underflows
// in addition, we must check that the denominator does not underflow
require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
uint256 denominator = numerator1 - product;
return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
}
}
/// @notice Gets the next sqrt price given a delta of token1
/// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
/// price less in order to not send too much output.
/// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
/// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token1 to add, or remove, from virtual reserves
/// @param add Whether to add, or remove, the amount of token1
/// @return The price after adding or removing `amount`
function getNextSqrtPriceFromAmount1RoundingDown(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// if we're adding (subtracting), rounding down requires rounding the quotient down (up)
// in both cases, avoid a mulDiv for most inputs
if (add) {
uint256 quotient =
(
amount <= type(uint160).max
? (amount << FixedPoint96.RESOLUTION) / liquidity
: FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
);
return uint256(sqrtPX96).add(quotient).toUint160();
} else {
uint256 quotient =
(
amount <= type(uint160).max
? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
: FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
);
require(sqrtPX96 > quotient);
// always fits 160 bits
return uint160(sqrtPX96 - quotient);
}
}
/// @notice Gets the next sqrt price given an input amount of token0 or token1
/// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
/// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
/// @param liquidity The amount of usable liquidity
/// @param amountIn How much of token0, or token1, is being swapped in
/// @param zeroForOne Whether the amount in is token0 or token1
/// @return sqrtQX96 The price after adding the input amount to token0 or token1
function getNextSqrtPriceFromInput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountIn,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we don't pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
: getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
}
/// @notice Gets the next sqrt price given an output amount of token0 or token1
/// @dev Throws if price or liquidity are 0 or the next price is out of bounds
/// @param sqrtPX96 The starting price before accounting for the output amount
/// @param liquidity The amount of usable liquidity
/// @param amountOut How much of token0, or token1, is being swapped out
/// @param zeroForOne Whether the amount out is token0 or token1
/// @return sqrtQX96 The price after removing the output amount of token0 or token1
function getNextSqrtPriceFromOutput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountOut,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
: getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
}
/// @notice Gets the amount0 delta between two prices
/// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
/// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up or down
/// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
require(sqrtRatioAX96 > 0);
return
roundUp
? UnsafeMath.divRoundingUp(
FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
sqrtRatioAX96
)
: FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
}
/// @notice Gets the amount1 delta between two prices
/// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up, or down
/// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
roundUp
? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
: FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
/// @notice Helper that gets signed token0 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount0 delta
/// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount0) {
return
liquidity < 0
? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
/// @notice Helper that gets signed token1 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount1 delta
/// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount1) {
return
liquidity < 0
? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;
import './FullMath.sol';
import './SqrtPriceMath.sol';
/// @title Computes the result of a swap within ticks
/// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
library SwapMath {
/// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
/// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
/// @param sqrtRatioCurrentX96 The current sqrt price of the pool
/// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
/// @param liquidity The usable liquidity
/// @param amountRemaining How much input or output amount is remaining to be swapped in/out
/// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
/// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
/// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
/// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
/// @return feeAmount The amount of input that will be taken as a fee
function computeSwapStep(
uint160 sqrtRatioCurrentX96,
uint160 sqrtRatioTargetX96,
uint128 liquidity,
int256 amountRemaining,
uint24 feePips
)
internal
pure
returns (
uint160 sqrtRatioNextX96,
uint256 amountIn,
uint256 amountOut,
uint256 feeAmount
)
{
bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
bool exactIn = amountRemaining >= 0;
if (exactIn) {
uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
amountIn = zeroForOne
? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
sqrtRatioCurrentX96,
liquidity,
amountRemainingLessFee,
zeroForOne
);
} else {
amountOut = zeroForOne
? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
sqrtRatioCurrentX96,
liquidity,
uint256(-amountRemaining),
zeroForOne
);
}
bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
// get the input/output amounts
if (zeroForOne) {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
} else {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
}
// cap the output amount to not exceed the remaining output amount
if (!exactIn && amountOut > uint256(-amountRemaining)) {
amountOut = uint256(-amountRemaining);
}
if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
// we didn't reach the target, so take the remainder of the maximum input as fee
feeAmount = uint256(amountRemaining) - amountIn;
} else {
feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title An interface for a contract that is capable of deploying Uniswap V3 Pools
/// @notice A contract that constructs a pool must implement this to pass arguments to the pool
/// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
/// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
interface IUniswapV3PoolDeployer {
/// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
/// @dev Called by the pool constructor to fetch the parameters of the pool
/// Returns factory The factory address
/// Returns token0 The first token of the pool by address sort order
/// Returns token1 The second token of the pool by address sort order
/// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// Returns tickSpacing The minimum number of ticks between initialized ticks
function parameters()
external
view
returns (
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Uniswap V3 Factory
/// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
interface IUniswapV3Factory {
/// @notice Emitted when the owner of the factory is changed
/// @param oldOwner The owner before the owner was changed
/// @param newOwner The owner after the owner was changed
event OwnerChanged(address indexed oldOwner, address indexed newOwner);
/// @notice Emitted when a pool is created
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks
/// @param pool The address of the created pool
event PoolCreated(
address indexed token0,
address indexed token1,
uint24 indexed fee,
int24 tickSpacing,
address pool
);
/// @notice Emitted when a new fee amount is enabled for pool creation via the factory
/// @param fee The enabled fee, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
/// @notice Returns the current owner of the factory
/// @dev Can be changed by the current owner via setOwner
/// @return The address of the factory owner
function owner() external view returns (address);
/// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
/// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
/// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
/// @return The tick spacing
function feeAmountTickSpacing(uint24 fee) external view returns (int24);
/// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
/// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The pool address
function getPool(
address tokenA,
address tokenB,
uint24 fee
) external view returns (address pool);
/// @notice Creates a pool for the given two tokens and fee
/// @param tokenA One of the two tokens in the desired pool
/// @param tokenB The other of the two tokens in the desired pool
/// @param fee The desired fee for the pool
/// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
/// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
/// are invalid.
/// @return pool The address of the newly created pool
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external returns (address pool);
/// @notice Updates the owner of the factory
/// @dev Must be called by the current owner
/// @param _owner The new owner of the factory
function setOwner(address _owner) external;
/// @notice Enables a fee amount with the given tickSpacing
/// @dev Fee amounts may never be removed once enabled
/// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
/// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Minimal ERC20 interface for Uniswap
/// @notice Contains a subset of the full ERC20 interface that is used in Uniswap V3
interface IERC20Minimal {
/// @notice Returns the balance of a token
/// @param account The account for which to look up the number of tokens it has, i.e. its balance
/// @return The number of tokens held by the account
function balanceOf(address account) external view returns (uint256);
/// @notice Transfers the amount of token from the `msg.sender` to the recipient
/// @param recipient The account that will receive the amount transferred
/// @param amount The number of tokens to send from the sender to the recipient
/// @return Returns true for a successful transfer, false for an unsuccessful transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/// @notice Returns the current allowance given to a spender by an owner
/// @param owner The account of the token owner
/// @param spender The account of the token spender
/// @return The current allowance granted by `owner` to `spender`
function allowance(address owner, address spender) external view returns (uint256);
/// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
/// @param spender The account which will be allowed to spend a given amount of the owners tokens
/// @param amount The amount of tokens allowed to be used by `spender`
/// @return Returns true for a successful approval, false for unsuccessful
function approve(address spender, uint256 amount) external returns (bool);
/// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
/// @param sender The account from which the transfer will be initiated
/// @param recipient The recipient of the transfer
/// @param amount The amount of the transfer
/// @return Returns true for a successful transfer, false for unsuccessful
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
/// @param from The account from which the tokens were sent, i.e. the balance decreased
/// @param to The account to which the tokens were sent, i.e. the balance increased
/// @param value The amount of tokens that were transferred
event Transfer(address indexed from, address indexed to, uint256 value);
/// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
/// @param owner The account that approved spending of its tokens
/// @param spender The account for which the spending allowance was modified
/// @param value The new allowance from the owner to the spender
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#mint
/// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
interface IUniswapV3MintCallback {
/// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
/// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
/// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
function uniswapV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#flash
/// @notice Any contract that calls IUniswapV3PoolActions#flash must implement this interface
interface IUniswapV3FlashCallback {
/// @notice Called to `msg.sender` after transferring to the recipient from IUniswapV3Pool#flash.
/// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param fee0 The fee amount in token0 due to the pool by the end of the flash
/// @param fee1 The fee amount in token1 due to the pool by the end of the flash
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#flash call
function uniswapV3FlashCallback(
uint256 fee0,
uint256 fee1,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// observationIndex The index of the last oracle observation that was written,
/// observationCardinality The current maximum number of observations stored in the pool,
/// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper,
/// liquidityNet how much liquidity changes when the pool price crosses the tick,
/// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// secondsOutside the seconds spent on the other side of the tick from the current tick,
/// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return _liquidity The amount of liquidity in the position,
/// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 _liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// Returns initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title BitMath
/// @dev This library provides functionality for computing bit properties of an unsigned integer
library BitMath {
/// @notice Returns the index of the most significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
/// @param x the value for which to compute the most significant bit, must be greater than 0
/// @return r the index of the most significant bit
function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
if (x >= 0x100000000000000000000000000000000) {
x >>= 128;
r += 128;
}
if (x >= 0x10000000000000000) {
x >>= 64;
r += 64;
}
if (x >= 0x100000000) {
x >>= 32;
r += 32;
}
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 0x4) {
x >>= 2;
r += 2;
}
if (x >= 0x2) r += 1;
}
/// @notice Returns the index of the least significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
/// @param x the value for which to compute the least significant bit, must be greater than 0
/// @return r the index of the least significant bit
function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
r = 255;
if (x & type(uint128).max > 0) {
r -= 128;
} else {
x >>= 128;
}
if (x & type(uint64).max > 0) {
r -= 64;
} else {
x >>= 64;
}
if (x & type(uint32).max > 0) {
r -= 32;
} else {
x >>= 32;
}
if (x & type(uint16).max > 0) {
r -= 16;
} else {
x >>= 16;
}
if (x & type(uint8).max > 0) {
r -= 8;
} else {
x >>= 8;
}
if (x & 0xf > 0) {
r -= 4;
} else {
x >>= 4;
}
if (x & 0x3 > 0) {
r -= 2;
} else {
x >>= 2;
}
if (x & 0x1 > 0) r -= 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math functions that do not check inputs or outputs
/// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
library UnsafeMath {
/// @notice Returns ceil(x / y)
/// @dev division by 0 has unspecified behavior, and must be checked externally
/// @param x The dividend
/// @param y The divisor
/// @return z The quotient, ceil(x / y)
function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly {
z := add(div(x, y), gt(mod(x, y), 0))
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
File 4 of 7: TetherToken
pragma solidity ^0.4.17;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
assert(c / a == b);
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
assert(c >= a);
return c;
}
}
/**
* @title Ownable
* @dev The Ownable contract has an owner address, and provides basic authorization control
* functions, this simplifies the implementation of "user permissions".
*/
contract Ownable {
address public owner;
/**
* @dev The Ownable constructor sets the original `owner` of the contract to the sender
* account.
*/
function Ownable() public {
owner = msg.sender;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == owner);
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) public onlyOwner {
if (newOwner != address(0)) {
owner = newOwner;
}
}
}
/**
* @title ERC20Basic
* @dev Simpler version of ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20Basic {
uint public _totalSupply;
function totalSupply() public constant returns (uint);
function balanceOf(address who) public constant returns (uint);
function transfer(address to, uint value) public;
event Transfer(address indexed from, address indexed to, uint value);
}
/**
* @title ERC20 interface
* @dev see https://github.com/ethereum/EIPs/issues/20
*/
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender) public constant returns (uint);
function transferFrom(address from, address to, uint value) public;
function approve(address spender, uint value) public;
event Approval(address indexed owner, address indexed spender, uint value);
}
/**
* @title Basic token
* @dev Basic version of StandardToken, with no allowances.
*/
contract BasicToken is Ownable, ERC20Basic {
using SafeMath for uint;
mapping(address => uint) public balances;
// additional variables for use if transaction fees ever became necessary
uint public basisPointsRate = 0;
uint public maximumFee = 0;
/**
* @dev Fix for the ERC20 short address attack.
*/
modifier onlyPayloadSize(uint size) {
require(!(msg.data.length < size + 4));
_;
}
/**
* @dev transfer token for a specified address
* @param _to The address to transfer to.
* @param _value The amount to be transferred.
*/
function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
uint fee = (_value.mul(basisPointsRate)).div(10000);
if (fee > maximumFee) {
fee = maximumFee;
}
uint sendAmount = _value.sub(fee);
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(sendAmount);
if (fee > 0) {
balances[owner] = balances[owner].add(fee);
Transfer(msg.sender, owner, fee);
}
Transfer(msg.sender, _to, sendAmount);
}
/**
* @dev Gets the balance of the specified address.
* @param _owner The address to query the the balance of.
* @return An uint representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public constant returns (uint balance) {
return balances[_owner];
}
}
/**
* @title Standard ERC20 token
*
* @dev Implementation of the basic standard token.
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is BasicToken, ERC20 {
mapping (address => mapping (address => uint)) public allowed;
uint public constant MAX_UINT = 2**256 - 1;
/**
* @dev Transfer tokens from one address to another
* @param _from address The address which you want to send tokens from
* @param _to address The address which you want to transfer to
* @param _value uint the amount of tokens to be transferred
*/
function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
var _allowance = allowed[_from][msg.sender];
// Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
// if (_value > _allowance) throw;
uint fee = (_value.mul(basisPointsRate)).div(10000);
if (fee > maximumFee) {
fee = maximumFee;
}
if (_allowance < MAX_UINT) {
allowed[_from][msg.sender] = _allowance.sub(_value);
}
uint sendAmount = _value.sub(fee);
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(sendAmount);
if (fee > 0) {
balances[owner] = balances[owner].add(fee);
Transfer(_from, owner, fee);
}
Transfer(_from, _to, sendAmount);
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param _spender The address which will spend the funds.
* @param _value The amount of tokens to be spent.
*/
function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
// To change the approve amount you first have to reduce the addresses`
// allowance to zero by calling `approve(_spender, 0)` if it is not
// already 0 to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
allowed[msg.sender][_spender] = _value;
Approval(msg.sender, _spender, _value);
}
/**
* @dev Function to check the amount of tokens than an owner allowed to a spender.
* @param _owner address The address which owns the funds.
* @param _spender address The address which will spend the funds.
* @return A uint specifying the amount of tokens still available for the spender.
*/
function allowance(address _owner, address _spender) public constant returns (uint remaining) {
return allowed[_owner][_spender];
}
}
/**
* @title Pausable
* @dev Base contract which allows children to implement an emergency stop mechanism.
*/
contract Pausable is Ownable {
event Pause();
event Unpause();
bool public paused = false;
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused);
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(paused);
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() onlyOwner whenNotPaused public {
paused = true;
Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() onlyOwner whenPaused public {
paused = false;
Unpause();
}
}
contract BlackList is Ownable, BasicToken {
/////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
function getBlackListStatus(address _maker) external constant returns (bool) {
return isBlackListed[_maker];
}
function getOwner() external constant returns (address) {
return owner;
}
mapping (address => bool) public isBlackListed;
function addBlackList (address _evilUser) public onlyOwner {
isBlackListed[_evilUser] = true;
AddedBlackList(_evilUser);
}
function removeBlackList (address _clearedUser) public onlyOwner {
isBlackListed[_clearedUser] = false;
RemovedBlackList(_clearedUser);
}
function destroyBlackFunds (address _blackListedUser) public onlyOwner {
require(isBlackListed[_blackListedUser]);
uint dirtyFunds = balanceOf(_blackListedUser);
balances[_blackListedUser] = 0;
_totalSupply -= dirtyFunds;
DestroyedBlackFunds(_blackListedUser, dirtyFunds);
}
event DestroyedBlackFunds(address _blackListedUser, uint _balance);
event AddedBlackList(address _user);
event RemovedBlackList(address _user);
}
contract UpgradedStandardToken is StandardToken{
// those methods are called by the legacy contract
// and they must ensure msg.sender to be the contract address
function transferByLegacy(address from, address to, uint value) public;
function transferFromByLegacy(address sender, address from, address spender, uint value) public;
function approveByLegacy(address from, address spender, uint value) public;
}
contract TetherToken is Pausable, StandardToken, BlackList {
string public name;
string public symbol;
uint public decimals;
address public upgradedAddress;
bool public deprecated;
// The contract can be initialized with a number of tokens
// All the tokens are deposited to the owner address
//
// @param _balance Initial supply of the contract
// @param _name Token Name
// @param _symbol Token symbol
// @param _decimals Token decimals
function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
_totalSupply = _initialSupply;
name = _name;
symbol = _symbol;
decimals = _decimals;
balances[owner] = _initialSupply;
deprecated = false;
}
// Forward ERC20 methods to upgraded contract if this one is deprecated
function transfer(address _to, uint _value) public whenNotPaused {
require(!isBlackListed[msg.sender]);
if (deprecated) {
return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
} else {
return super.transfer(_to, _value);
}
}
// Forward ERC20 methods to upgraded contract if this one is deprecated
function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
require(!isBlackListed[_from]);
if (deprecated) {
return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
} else {
return super.transferFrom(_from, _to, _value);
}
}
// Forward ERC20 methods to upgraded contract if this one is deprecated
function balanceOf(address who) public constant returns (uint) {
if (deprecated) {
return UpgradedStandardToken(upgradedAddress).balanceOf(who);
} else {
return super.balanceOf(who);
}
}
// Forward ERC20 methods to upgraded contract if this one is deprecated
function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
if (deprecated) {
return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
} else {
return super.approve(_spender, _value);
}
}
// Forward ERC20 methods to upgraded contract if this one is deprecated
function allowance(address _owner, address _spender) public constant returns (uint remaining) {
if (deprecated) {
return StandardToken(upgradedAddress).allowance(_owner, _spender);
} else {
return super.allowance(_owner, _spender);
}
}
// deprecate current contract in favour of a new one
function deprecate(address _upgradedAddress) public onlyOwner {
deprecated = true;
upgradedAddress = _upgradedAddress;
Deprecate(_upgradedAddress);
}
// deprecate current contract if favour of a new one
function totalSupply() public constant returns (uint) {
if (deprecated) {
return StandardToken(upgradedAddress).totalSupply();
} else {
return _totalSupply;
}
}
// Issue a new amount of tokens
// these tokens are deposited into the owner address
//
// @param _amount Number of tokens to be issued
function issue(uint amount) public onlyOwner {
require(_totalSupply + amount > _totalSupply);
require(balances[owner] + amount > balances[owner]);
balances[owner] += amount;
_totalSupply += amount;
Issue(amount);
}
// Redeem tokens.
// These tokens are withdrawn from the owner address
// if the balance must be enough to cover the redeem
// or the call will fail.
// @param _amount Number of tokens to be issued
function redeem(uint amount) public onlyOwner {
require(_totalSupply >= amount);
require(balances[owner] >= amount);
_totalSupply -= amount;
balances[owner] -= amount;
Redeem(amount);
}
function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
// Ensure transparency by hardcoding limit beyond which fees can never be added
require(newBasisPoints < 20);
require(newMaxFee < 50);
basisPointsRate = newBasisPoints;
maximumFee = newMaxFee.mul(10**decimals);
Params(basisPointsRate, maximumFee);
}
// Called when new token are issued
event Issue(uint amount);
// Called when tokens are redeemed
event Redeem(uint amount);
// Called when contract is deprecated
event Deprecate(address newAddress);
// Called if contract ever adds fees
event Params(uint feeBasisPoints, uint maxFee);
}File 5 of 7: FiatTokenProxy
pragma solidity ^0.4.24;
// File: zos-lib/contracts/upgradeability/Proxy.sol
/**
* @title Proxy
* @dev Implements delegation of calls to other contracts, with proper
* forwarding of return values and bubbling of failures.
* It defines a fallback function that delegates all calls to the address
* returned by the abstract _implementation() internal function.
*/
contract Proxy {
/**
* @dev Fallback function.
* Implemented entirely in `_fallback`.
*/
function () payable external {
_fallback();
}
/**
* @return The Address of the implementation.
*/
function _implementation() internal view returns (address);
/**
* @dev Delegates execution to an implementation contract.
* This is a low level function that doesn't return to its internal call site.
* It will return to the external caller whatever the implementation returns.
* @param implementation Address to delegate.
*/
function _delegate(address implementation) internal {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize)
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas, implementation, 0, calldatasize, 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize)
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize) }
default { return(0, returndatasize) }
}
}
/**
* @dev Function that is run as the first thing in the fallback function.
* Can be redefined in derived contracts to add functionality.
* Redefinitions must call super._willFallback().
*/
function _willFallback() internal {
}
/**
* @dev fallback implementation.
* Extracted to enable manual triggering.
*/
function _fallback() internal {
_willFallback();
_delegate(_implementation());
}
}
// File: openzeppelin-solidity/contracts/AddressUtils.sol
/**
* Utility library of inline functions on addresses
*/
library AddressUtils {
/**
* Returns whether the target address is a contract
* @dev This function will return false if invoked during the constructor of a contract,
* as the code is not actually created until after the constructor finishes.
* @param addr address to check
* @return whether the target address is a contract
*/
function isContract(address addr) internal view returns (bool) {
uint256 size;
// XXX Currently there is no better way to check if there is a contract in an address
// than to check the size of the code at that address.
// See https://ethereum.stackexchange.com/a/14016/36603
// for more details about how this works.
// TODO Check this again before the Serenity release, because all addresses will be
// contracts then.
// solium-disable-next-line security/no-inline-assembly
assembly { size := extcodesize(addr) }
return size > 0;
}
}
// File: zos-lib/contracts/upgradeability/UpgradeabilityProxy.sol
/**
* @title UpgradeabilityProxy
* @dev This contract implements a proxy that allows to change the
* implementation address to which it will delegate.
* Such a change is called an implementation upgrade.
*/
contract UpgradeabilityProxy is Proxy {
/**
* @dev Emitted when the implementation is upgraded.
* @param implementation Address of the new implementation.
*/
event Upgraded(address implementation);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "org.zeppelinos.proxy.implementation", and is
* validated in the constructor.
*/
bytes32 private constant IMPLEMENTATION_SLOT = 0x7050c9e0f4ca769c69bd3a8ef740bc37934f8e2c036e5a723fd8ee048ed3f8c3;
/**
* @dev Contract constructor.
* @param _implementation Address of the initial implementation.
*/
constructor(address _implementation) public {
assert(IMPLEMENTATION_SLOT == keccak256("org.zeppelinos.proxy.implementation"));
_setImplementation(_implementation);
}
/**
* @dev Returns the current implementation.
* @return Address of the current implementation
*/
function _implementation() internal view returns (address impl) {
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
impl := sload(slot)
}
}
/**
* @dev Upgrades the proxy to a new implementation.
* @param newImplementation Address of the new implementation.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Sets the implementation address of the proxy.
* @param newImplementation Address of the new implementation.
*/
function _setImplementation(address newImplementation) private {
require(AddressUtils.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");
bytes32 slot = IMPLEMENTATION_SLOT;
assembly {
sstore(slot, newImplementation)
}
}
}
// File: zos-lib/contracts/upgradeability/AdminUpgradeabilityProxy.sol
/**
* @title AdminUpgradeabilityProxy
* @dev This contract combines an upgradeability proxy with an authorization
* mechanism for administrative tasks.
* All external functions in this contract must be guarded by the
* `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
* feature proposal that would enable this to be done automatically.
*/
contract AdminUpgradeabilityProxy is UpgradeabilityProxy {
/**
* @dev Emitted when the administration has been transferred.
* @param previousAdmin Address of the previous admin.
* @param newAdmin Address of the new admin.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "org.zeppelinos.proxy.admin", and is
* validated in the constructor.
*/
bytes32 private constant ADMIN_SLOT = 0x10d6a54a4754c8869d6886b5f5d7fbfa5b4522237ea5c60d11bc4e7a1ff9390b;
/**
* @dev Modifier to check whether the `msg.sender` is the admin.
* If it is, it will run the function. Otherwise, it will delegate the call
* to the implementation.
*/
modifier ifAdmin() {
if (msg.sender == _admin()) {
_;
} else {
_fallback();
}
}
/**
* Contract constructor.
* It sets the `msg.sender` as the proxy administrator.
* @param _implementation address of the initial implementation.
*/
constructor(address _implementation) UpgradeabilityProxy(_implementation) public {
assert(ADMIN_SLOT == keccak256("org.zeppelinos.proxy.admin"));
_setAdmin(msg.sender);
}
/**
* @return The address of the proxy admin.
*/
function admin() external view ifAdmin returns (address) {
return _admin();
}
/**
* @return The address of the implementation.
*/
function implementation() external view ifAdmin returns (address) {
return _implementation();
}
/**
* @dev Changes the admin of the proxy.
* Only the current admin can call this function.
* @param newAdmin Address to transfer proxy administration to.
*/
function changeAdmin(address newAdmin) external ifAdmin {
require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
emit AdminChanged(_admin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev Upgrade the backing implementation of the proxy.
* Only the admin can call this function.
* @param newImplementation Address of the new implementation.
*/
function upgradeTo(address newImplementation) external ifAdmin {
_upgradeTo(newImplementation);
}
/**
* @dev Upgrade the backing implementation of the proxy and call a function
* on the new implementation.
* This is useful to initialize the proxied contract.
* @param newImplementation Address of the new implementation.
* @param data Data to send as msg.data in the low level call.
* It should include the signature and the parameters of the function to be
* called, as described in
* https://solidity.readthedocs.io/en/develop/abi-spec.html#function-selector-and-argument-encoding.
*/
function upgradeToAndCall(address newImplementation, bytes data) payable external ifAdmin {
_upgradeTo(newImplementation);
require(address(this).call.value(msg.value)(data));
}
/**
* @return The admin slot.
*/
function _admin() internal view returns (address adm) {
bytes32 slot = ADMIN_SLOT;
assembly {
adm := sload(slot)
}
}
/**
* @dev Sets the address of the proxy admin.
* @param newAdmin Address of the new proxy admin.
*/
function _setAdmin(address newAdmin) internal {
bytes32 slot = ADMIN_SLOT;
assembly {
sstore(slot, newAdmin)
}
}
/**
* @dev Only fall back when the sender is not the admin.
*/
function _willFallback() internal {
require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
super._willFallback();
}
}
// File: contracts/FiatTokenProxy.sol
/**
* Copyright CENTRE SECZ 2018
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished to
* do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
pragma solidity ^0.4.24;
/**
* @title FiatTokenProxy
* @dev This contract proxies FiatToken calls and enables FiatToken upgrades
*/
contract FiatTokenProxy is AdminUpgradeabilityProxy {
constructor(address _implementation) public AdminUpgradeabilityProxy(_implementation) {
}
}File 6 of 7: FiatTokenV2_2
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { EIP712Domain } from "./EIP712Domain.sol"; // solhint-disable-line no-unused-import
import { Blacklistable } from "../v1/Blacklistable.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV1 } from "../v1/FiatTokenV1.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV2 } from "./FiatTokenV2.sol"; // solhint-disable-line no-unused-import
import { FiatTokenV2_1 } from "./FiatTokenV2_1.sol";
import { EIP712 } from "../util/EIP712.sol";
// solhint-disable func-name-mixedcase
/**
* @title FiatToken V2.2
* @notice ERC20 Token backed by fiat reserves, version 2.2
*/
contract FiatTokenV2_2 is FiatTokenV2_1 {
/**
* @notice Initialize v2.2
* @param accountsToBlacklist A list of accounts to migrate from the old blacklist
* @param newSymbol New token symbol
* data structure to the new blacklist data structure.
*/
function initializeV2_2(
address[] calldata accountsToBlacklist,
string calldata newSymbol
) external {
// solhint-disable-next-line reason-string
require(_initializedVersion == 2);
// Update fiat token symbol
symbol = newSymbol;
// Add previously blacklisted accounts to the new blacklist data structure
// and remove them from the old blacklist data structure.
for (uint256 i = 0; i < accountsToBlacklist.length; i++) {
require(
_deprecatedBlacklisted[accountsToBlacklist[i]],
"FiatTokenV2_2: Blacklisting previously unblacklisted account!"
);
_blacklist(accountsToBlacklist[i]);
delete _deprecatedBlacklisted[accountsToBlacklist[i]];
}
_blacklist(address(this));
delete _deprecatedBlacklisted[address(this)];
_initializedVersion = 3;
}
/**
* @dev Internal function to get the current chain id.
* @return The current chain id.
*/
function _chainId() internal virtual view returns (uint256) {
uint256 chainId;
assembly {
chainId := chainid()
}
return chainId;
}
/**
* @inheritdoc EIP712Domain
*/
function _domainSeparator() internal override view returns (bytes32) {
return EIP712.makeDomainSeparator(name, "2", _chainId());
}
/**
* @notice Update allowance with a signed permit
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
bytes memory signature
) external whenNotPaused {
_permit(owner, spender, value, deadline, signature);
}
/**
* @notice Execute a transfer with a signed authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
signature
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
signature
);
}
/**
* @notice Attempt to cancel an authorization
* @dev Works only if the authorization is not yet used.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param signature Signature bytes signed by an EOA wallet or a contract wallet
*/
function cancelAuthorization(
address authorizer,
bytes32 nonce,
bytes memory signature
) external whenNotPaused {
_cancelAuthorization(authorizer, nonce, signature);
}
/**
* @dev Helper method that sets the blacklist state of an account on balanceAndBlacklistStates.
* If _shouldBlacklist is true, we apply a (1 << 255) bitmask with an OR operation on the
* account's balanceAndBlacklistState. This flips the high bit for the account to 1,
* indicating that the account is blacklisted.
*
* If _shouldBlacklist if false, we reset the account's balanceAndBlacklistStates to their
* balances. This clears the high bit for the account, indicating that the account is unblacklisted.
* @param _account The address of the account.
* @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
*/
function _setBlacklistState(address _account, bool _shouldBlacklist)
internal
override
{
balanceAndBlacklistStates[_account] = _shouldBlacklist
? balanceAndBlacklistStates[_account] | (1 << 255)
: _balanceOf(_account);
}
/**
* @dev Helper method that sets the balance of an account on balanceAndBlacklistStates.
* Since balances are stored in the last 255 bits of the balanceAndBlacklistStates value,
* we need to ensure that the updated balance does not exceed (2^255 - 1).
* Since blacklisted accounts' balances cannot be updated, the method will also
* revert if the account is blacklisted
* @param _account The address of the account.
* @param _balance The new fiat token balance of the account (max: (2^255 - 1)).
*/
function _setBalance(address _account, uint256 _balance) internal override {
require(
_balance <= ((1 << 255) - 1),
"FiatTokenV2_2: Balance exceeds (2^255 - 1)"
);
require(
!_isBlacklisted(_account),
"FiatTokenV2_2: Account is blacklisted"
);
balanceAndBlacklistStates[_account] = _balance;
}
/**
* @inheritdoc Blacklistable
*/
function _isBlacklisted(address _account)
internal
override
view
returns (bool)
{
return balanceAndBlacklistStates[_account] >> 255 == 1;
}
/**
* @dev Helper method to obtain the balance of an account. Since balances
* are stored in the last 255 bits of the balanceAndBlacklistStates value,
* we apply a ((1 << 255) - 1) bit bitmask with an AND operation on the
* balanceAndBlacklistState to obtain the balance.
* @param _account The address of the account.
* @return The fiat token balance of the account.
*/
function _balanceOf(address _account)
internal
override
view
returns (uint256)
{
return balanceAndBlacklistStates[_account] & ((1 << 255) - 1);
}
/**
* @inheritdoc FiatTokenV1
*/
function approve(address spender, uint256 value)
external
override
whenNotPaused
returns (bool)
{
_approve(msg.sender, spender, value);
return true;
}
/**
* @inheritdoc FiatTokenV2
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external override whenNotPaused {
_permit(owner, spender, value, deadline, v, r, s);
}
/**
* @inheritdoc FiatTokenV2
*/
function increaseAllowance(address spender, uint256 increment)
external
override
whenNotPaused
returns (bool)
{
_increaseAllowance(msg.sender, spender, increment);
return true;
}
/**
* @inheritdoc FiatTokenV2
*/
function decreaseAllowance(address spender, uint256 decrement)
external
override
whenNotPaused
returns (bool)
{
_decreaseAllowance(msg.sender, spender, decrement);
return true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV2 } from "./FiatTokenV2.sol";
// solhint-disable func-name-mixedcase
/**
* @title FiatToken V2.1
* @notice ERC20 Token backed by fiat reserves, version 2.1
*/
contract FiatTokenV2_1 is FiatTokenV2 {
/**
* @notice Initialize v2.1
* @param lostAndFound The address to which the locked funds are sent
*/
function initializeV2_1(address lostAndFound) external {
// solhint-disable-next-line reason-string
require(_initializedVersion == 1);
uint256 lockedAmount = _balanceOf(address(this));
if (lockedAmount > 0) {
_transfer(address(this), lostAndFound, lockedAmount);
}
_blacklist(address(this));
_initializedVersion = 2;
}
/**
* @notice Version string for the EIP712 domain separator
* @return Version string
*/
function version() external pure returns (string memory) {
return "2";
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV1_1 } from "../v1.1/FiatTokenV1_1.sol";
import { EIP712 } from "../util/EIP712.sol";
import { EIP3009 } from "./EIP3009.sol";
import { EIP2612 } from "./EIP2612.sol";
/**
* @title FiatToken V2
* @notice ERC20 Token backed by fiat reserves, version 2
*/
contract FiatTokenV2 is FiatTokenV1_1, EIP3009, EIP2612 {
uint8 internal _initializedVersion;
/**
* @notice Initialize v2
* @param newName New token name
*/
function initializeV2(string calldata newName) external {
// solhint-disable-next-line reason-string
require(initialized && _initializedVersion == 0);
name = newName;
_DEPRECATED_CACHED_DOMAIN_SEPARATOR = EIP712.makeDomainSeparator(
newName,
"2"
);
_initializedVersion = 1;
}
/**
* @notice Increase the allowance by a given increment
* @param spender Spender's address
* @param increment Amount of increase in allowance
* @return True if successful
*/
function increaseAllowance(address spender, uint256 increment)
external
virtual
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_increaseAllowance(msg.sender, spender, increment);
return true;
}
/**
* @notice Decrease the allowance by a given decrement
* @param spender Spender's address
* @param decrement Amount of decrease in allowance
* @return True if successful
*/
function decreaseAllowance(address spender, uint256 decrement)
external
virtual
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_decreaseAllowance(msg.sender, spender, decrement);
return true;
}
/**
* @notice Execute a transfer with a signed authorization
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
v,
r,
s
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused notBlacklisted(from) notBlacklisted(to) {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
v,
r,
s
);
}
/**
* @notice Attempt to cancel an authorization
* @dev Works only if the authorization is not yet used.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function cancelAuthorization(
address authorizer,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) external whenNotPaused {
_cancelAuthorization(authorizer, nonce, v, r, s);
}
/**
* @notice Update allowance with a signed permit
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
)
external
virtual
whenNotPaused
notBlacklisted(owner)
notBlacklisted(spender)
{
_permit(owner, spender, value, deadline, v, r, s);
}
/**
* @dev Internal function to increase the allowance by a given increment
* @param owner Token owner's address
* @param spender Spender's address
* @param increment Amount of increase
*/
function _increaseAllowance(
address owner,
address spender,
uint256 increment
) internal override {
_approve(owner, spender, allowed[owner][spender].add(increment));
}
/**
* @dev Internal function to decrease the allowance by a given decrement
* @param owner Token owner's address
* @param spender Spender's address
* @param decrement Amount of decrease
*/
function _decreaseAllowance(
address owner,
address spender,
uint256 decrement
) internal override {
_approve(
owner,
spender,
allowed[owner][spender].sub(
decrement,
"ERC20: decreased allowance below zero"
)
);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
// solhint-disable func-name-mixedcase
/**
* @title EIP712 Domain
*/
contract EIP712Domain {
// was originally DOMAIN_SEPARATOR
// but that has been moved to a method so we can override it in V2_2+
bytes32 internal _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
/**
* @notice Get the EIP712 Domain Separator.
* @return The bytes32 EIP712 domain separator.
*/
function DOMAIN_SEPARATOR() external view returns (bytes32) {
return _domainSeparator();
}
/**
* @dev Internal method to get the EIP712 Domain Separator.
* @return The bytes32 EIP712 domain separator.
*/
function _domainSeparator() internal virtual view returns (bytes32) {
return _DEPRECATED_CACHED_DOMAIN_SEPARATOR;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
import { EIP712Domain } from "./EIP712Domain.sol";
import { SignatureChecker } from "../util/SignatureChecker.sol";
import { MessageHashUtils } from "../util/MessageHashUtils.sol";
/**
* @title EIP-3009
* @notice Provide internal implementation for gas-abstracted transfers
* @dev Contracts that inherit from this must wrap these with publicly
* accessible functions, optionally adding modifiers where necessary
*/
abstract contract EIP3009 is AbstractFiatTokenV2, EIP712Domain {
// keccak256("TransferWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
bytes32
public constant TRANSFER_WITH_AUTHORIZATION_TYPEHASH = 0x7c7c6cdb67a18743f49ec6fa9b35f50d52ed05cbed4cc592e13b44501c1a2267;
// keccak256("ReceiveWithAuthorization(address from,address to,uint256 value,uint256 validAfter,uint256 validBefore,bytes32 nonce)")
bytes32
public constant RECEIVE_WITH_AUTHORIZATION_TYPEHASH = 0xd099cc98ef71107a616c4f0f941f04c322d8e254fe26b3c6668db87aae413de8;
// keccak256("CancelAuthorization(address authorizer,bytes32 nonce)")
bytes32
public constant CANCEL_AUTHORIZATION_TYPEHASH = 0x158b0a9edf7a828aad02f63cd515c68ef2f50ba807396f6d12842833a1597429;
/**
* @dev authorizer address => nonce => bool (true if nonce is used)
*/
mapping(address => mapping(bytes32 => bool)) private _authorizationStates;
event AuthorizationUsed(address indexed authorizer, bytes32 indexed nonce);
event AuthorizationCanceled(
address indexed authorizer,
bytes32 indexed nonce
);
/**
* @notice Returns the state of an authorization
* @dev Nonces are randomly generated 32-byte data unique to the
* authorizer's address
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @return True if the nonce is used
*/
function authorizationState(address authorizer, bytes32 nonce)
external
view
returns (bool)
{
return _authorizationStates[authorizer][nonce];
}
/**
* @notice Execute a transfer with a signed authorization
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_transferWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
abi.encodePacked(r, s, v)
);
}
/**
* @notice Execute a transfer with a signed authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _transferWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) internal {
_requireValidAuthorization(from, nonce, validAfter, validBefore);
_requireValidSignature(
from,
keccak256(
abi.encode(
TRANSFER_WITH_AUTHORIZATION_TYPEHASH,
from,
to,
value,
validAfter,
validBefore,
nonce
)
),
signature
);
_markAuthorizationAsUsed(from, nonce);
_transfer(from, to, value);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_receiveWithAuthorization(
from,
to,
value,
validAfter,
validBefore,
nonce,
abi.encodePacked(r, s, v)
);
}
/**
* @notice Receive a transfer with a signed authorization from the payer
* @dev This has an additional check to ensure that the payee's address
* matches the caller of this function to prevent front-running attacks.
* EOA wallet signatures should be packed in the order of r, s, v.
* @param from Payer's address (Authorizer)
* @param to Payee's address
* @param value Amount to be transferred
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
* @param nonce Unique nonce
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _receiveWithAuthorization(
address from,
address to,
uint256 value,
uint256 validAfter,
uint256 validBefore,
bytes32 nonce,
bytes memory signature
) internal {
require(to == msg.sender, "FiatTokenV2: caller must be the payee");
_requireValidAuthorization(from, nonce, validAfter, validBefore);
_requireValidSignature(
from,
keccak256(
abi.encode(
RECEIVE_WITH_AUTHORIZATION_TYPEHASH,
from,
to,
value,
validAfter,
validBefore,
nonce
)
),
signature
);
_markAuthorizationAsUsed(from, nonce);
_transfer(from, to, value);
}
/**
* @notice Attempt to cancel an authorization
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _cancelAuthorization(
address authorizer,
bytes32 nonce,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_cancelAuthorization(authorizer, nonce, abi.encodePacked(r, s, v));
}
/**
* @notice Attempt to cancel an authorization
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _cancelAuthorization(
address authorizer,
bytes32 nonce,
bytes memory signature
) internal {
_requireUnusedAuthorization(authorizer, nonce);
_requireValidSignature(
authorizer,
keccak256(
abi.encode(CANCEL_AUTHORIZATION_TYPEHASH, authorizer, nonce)
),
signature
);
_authorizationStates[authorizer][nonce] = true;
emit AuthorizationCanceled(authorizer, nonce);
}
/**
* @notice Validates that signature against input data struct
* @param signer Signer's address
* @param dataHash Hash of encoded data struct
* @param signature Signature byte array produced by an EOA wallet or a contract wallet
*/
function _requireValidSignature(
address signer,
bytes32 dataHash,
bytes memory signature
) private view {
require(
SignatureChecker.isValidSignatureNow(
signer,
MessageHashUtils.toTypedDataHash(_domainSeparator(), dataHash),
signature
),
"FiatTokenV2: invalid signature"
);
}
/**
* @notice Check that an authorization is unused
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
*/
function _requireUnusedAuthorization(address authorizer, bytes32 nonce)
private
view
{
require(
!_authorizationStates[authorizer][nonce],
"FiatTokenV2: authorization is used or canceled"
);
}
/**
* @notice Check that authorization is valid
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
* @param validAfter The time after which this is valid (unix time)
* @param validBefore The time before which this is valid (unix time)
*/
function _requireValidAuthorization(
address authorizer,
bytes32 nonce,
uint256 validAfter,
uint256 validBefore
) private view {
require(
now > validAfter,
"FiatTokenV2: authorization is not yet valid"
);
require(now < validBefore, "FiatTokenV2: authorization is expired");
_requireUnusedAuthorization(authorizer, nonce);
}
/**
* @notice Mark an authorization as used
* @param authorizer Authorizer's address
* @param nonce Nonce of the authorization
*/
function _markAuthorizationAsUsed(address authorizer, bytes32 nonce)
private
{
_authorizationStates[authorizer][nonce] = true;
emit AuthorizationUsed(authorizer, nonce);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV2 } from "./AbstractFiatTokenV2.sol";
import { EIP712Domain } from "./EIP712Domain.sol";
import { MessageHashUtils } from "../util/MessageHashUtils.sol";
import { SignatureChecker } from "../util/SignatureChecker.sol";
/**
* @title EIP-2612
* @notice Provide internal implementation for gas-abstracted approvals
*/
abstract contract EIP2612 is AbstractFiatTokenV2, EIP712Domain {
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")
bytes32
public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint256) private _permitNonces;
/**
* @notice Nonces for permit
* @param owner Token owner's address (Authorizer)
* @return Next nonce
*/
function nonces(address owner) external view returns (uint256) {
return _permitNonces[owner];
}
/**
* @notice Verify a signed approval permit and execute if valid
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
*/
function _permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
_permit(owner, spender, value, deadline, abi.encodePacked(r, s, v));
}
/**
* @notice Verify a signed approval permit and execute if valid
* @dev EOA wallet signatures should be packed in the order of r, s, v.
* @param owner Token owner's address (Authorizer)
* @param spender Spender's address
* @param value Amount of allowance
* @param deadline The time at which the signature expires (unix time), or max uint256 value to signal no expiration
* @param signature Signature byte array signed by an EOA wallet or a contract wallet
*/
function _permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
bytes memory signature
) internal {
require(
deadline == type(uint256).max || deadline >= now,
"FiatTokenV2: permit is expired"
);
bytes32 typedDataHash = MessageHashUtils.toTypedDataHash(
_domainSeparator(),
keccak256(
abi.encode(
PERMIT_TYPEHASH,
owner,
spender,
value,
_permitNonces[owner]++,
deadline
)
)
);
require(
SignatureChecker.isValidSignatureNow(
owner,
typedDataHash,
signature
),
"EIP2612: invalid signature"
);
_approve(owner, spender, value);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { AbstractFiatTokenV1 } from "../v1/AbstractFiatTokenV1.sol";
abstract contract AbstractFiatTokenV2 is AbstractFiatTokenV1 {
function _increaseAllowance(
address owner,
address spender,
uint256 increment
) internal virtual;
function _decreaseAllowance(
address owner,
address spender,
uint256 decrement
) internal virtual;
}
/**
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2016 Smart Contract Solutions, Inc.
* Copyright (c) 2018-2020 CENTRE SECZ
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
pragma solidity 0.6.12;
import { Ownable } from "./Ownable.sol";
/**
* @notice Base contract which allows children to implement an emergency stop
* mechanism
* @dev Forked from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/feb665136c0dae9912e08397c1a21c4af3651ef3/contracts/lifecycle/Pausable.sol
* Modifications:
* 1. Added pauser role, switched pause/unpause to be onlyPauser (6/14/2018)
* 2. Removed whenNotPause/whenPaused from pause/unpause (6/14/2018)
* 3. Removed whenPaused (6/14/2018)
* 4. Switches ownable library to use ZeppelinOS (7/12/18)
* 5. Remove constructor (7/13/18)
* 6. Reformat, conform to Solidity 0.6 syntax and add error messages (5/13/20)
* 7. Make public functions external (5/27/20)
*/
contract Pausable is Ownable {
event Pause();
event Unpause();
event PauserChanged(address indexed newAddress);
address public pauser;
bool public paused = false;
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!paused, "Pausable: paused");
_;
}
/**
* @dev throws if called by any account other than the pauser
*/
modifier onlyPauser() {
require(msg.sender == pauser, "Pausable: caller is not the pauser");
_;
}
/**
* @dev called by the owner to pause, triggers stopped state
*/
function pause() external onlyPauser {
paused = true;
emit Pause();
}
/**
* @dev called by the owner to unpause, returns to normal state
*/
function unpause() external onlyPauser {
paused = false;
emit Unpause();
}
/**
* @notice Updates the pauser address.
* @param _newPauser The address of the new pauser.
*/
function updatePauser(address _newPauser) external onlyOwner {
require(
_newPauser != address(0),
"Pausable: new pauser is the zero address"
);
pauser = _newPauser;
emit PauserChanged(pauser);
}
}
/**
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2018 zOS Global Limited.
* Copyright (c) 2018-2020 CENTRE SECZ
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
pragma solidity 0.6.12;
/**
* @notice The Ownable contract has an owner address, and provides basic
* authorization control functions
* @dev Forked from https://github.com/OpenZeppelin/openzeppelin-labs/blob/3887ab77b8adafba4a26ace002f3a684c1a3388b/upgradeability_ownership/contracts/ownership/Ownable.sol
* Modifications:
* 1. Consolidate OwnableStorage into this contract (7/13/18)
* 2. Reformat, conform to Solidity 0.6 syntax, and add error messages (5/13/20)
* 3. Make public functions external (5/27/20)
*/
contract Ownable {
// Owner of the contract
address private _owner;
/**
* @dev Event to show ownership has been transferred
* @param previousOwner representing the address of the previous owner
* @param newOwner representing the address of the new owner
*/
event OwnershipTransferred(address previousOwner, address newOwner);
/**
* @dev The constructor sets the original owner of the contract to the sender account.
*/
constructor() public {
setOwner(msg.sender);
}
/**
* @dev Tells the address of the owner
* @return the address of the owner
*/
function owner() external view returns (address) {
return _owner;
}
/**
* @dev Sets a new owner address
*/
function setOwner(address newOwner) internal {
_owner = newOwner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(msg.sender == _owner, "Ownable: caller is not the owner");
_;
}
/**
* @dev Allows the current owner to transfer control of the contract to a newOwner.
* @param newOwner The address to transfer ownership to.
*/
function transferOwnership(address newOwner) external onlyOwner {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
setOwner(newOwner);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { SafeMath } from "@openzeppelin/contracts/math/SafeMath.sol";
import { AbstractFiatTokenV1 } from "./AbstractFiatTokenV1.sol";
import { Ownable } from "./Ownable.sol";
import { Pausable } from "./Pausable.sol";
import { Blacklistable } from "./Blacklistable.sol";
/**
* @title FiatToken
* @dev ERC20 Token backed by fiat reserves
*/
contract FiatTokenV1 is AbstractFiatTokenV1, Ownable, Pausable, Blacklistable {
using SafeMath for uint256;
string public name;
string public symbol;
uint8 public decimals;
string public currency;
address public masterMinter;
bool internal initialized;
/// @dev A mapping that stores the balance and blacklist states for a given address.
/// The first bit defines whether the address is blacklisted (1 if blacklisted, 0 otherwise).
/// The last 255 bits define the balance for the address.
mapping(address => uint256) internal balanceAndBlacklistStates;
mapping(address => mapping(address => uint256)) internal allowed;
uint256 internal totalSupply_ = 0;
mapping(address => bool) internal minters;
mapping(address => uint256) internal minterAllowed;
event Mint(address indexed minter, address indexed to, uint256 amount);
event Burn(address indexed burner, uint256 amount);
event MinterConfigured(address indexed minter, uint256 minterAllowedAmount);
event MinterRemoved(address indexed oldMinter);
event MasterMinterChanged(address indexed newMasterMinter);
/**
* @notice Initializes the fiat token contract.
* @param tokenName The name of the fiat token.
* @param tokenSymbol The symbol of the fiat token.
* @param tokenCurrency The fiat currency that the token represents.
* @param tokenDecimals The number of decimals that the token uses.
* @param newMasterMinter The masterMinter address for the fiat token.
* @param newPauser The pauser address for the fiat token.
* @param newBlacklister The blacklister address for the fiat token.
* @param newOwner The owner of the fiat token.
*/
function initialize(
string memory tokenName,
string memory tokenSymbol,
string memory tokenCurrency,
uint8 tokenDecimals,
address newMasterMinter,
address newPauser,
address newBlacklister,
address newOwner
) public {
require(!initialized, "FiatToken: contract is already initialized");
require(
newMasterMinter != address(0),
"FiatToken: new masterMinter is the zero address"
);
require(
newPauser != address(0),
"FiatToken: new pauser is the zero address"
);
require(
newBlacklister != address(0),
"FiatToken: new blacklister is the zero address"
);
require(
newOwner != address(0),
"FiatToken: new owner is the zero address"
);
name = tokenName;
symbol = tokenSymbol;
currency = tokenCurrency;
decimals = tokenDecimals;
masterMinter = newMasterMinter;
pauser = newPauser;
blacklister = newBlacklister;
setOwner(newOwner);
initialized = true;
}
/**
* @dev Throws if called by any account other than a minter.
*/
modifier onlyMinters() {
require(minters[msg.sender], "FiatToken: caller is not a minter");
_;
}
/**
* @notice Mints fiat tokens to an address.
* @param _to The address that will receive the minted tokens.
* @param _amount The amount of tokens to mint. Must be less than or equal
* to the minterAllowance of the caller.
* @return True if the operation was successful.
*/
function mint(address _to, uint256 _amount)
external
whenNotPaused
onlyMinters
notBlacklisted(msg.sender)
notBlacklisted(_to)
returns (bool)
{
require(_to != address(0), "FiatToken: mint to the zero address");
require(_amount > 0, "FiatToken: mint amount not greater than 0");
uint256 mintingAllowedAmount = minterAllowed[msg.sender];
require(
_amount <= mintingAllowedAmount,
"FiatToken: mint amount exceeds minterAllowance"
);
totalSupply_ = totalSupply_.add(_amount);
_setBalance(_to, _balanceOf(_to).add(_amount));
minterAllowed[msg.sender] = mintingAllowedAmount.sub(_amount);
emit Mint(msg.sender, _to, _amount);
emit Transfer(address(0), _to, _amount);
return true;
}
/**
* @dev Throws if called by any account other than the masterMinter
*/
modifier onlyMasterMinter() {
require(
msg.sender == masterMinter,
"FiatToken: caller is not the masterMinter"
);
_;
}
/**
* @notice Gets the minter allowance for an account.
* @param minter The address to check.
* @return The remaining minter allowance for the account.
*/
function minterAllowance(address minter) external view returns (uint256) {
return minterAllowed[minter];
}
/**
* @notice Checks if an account is a minter.
* @param account The address to check.
* @return True if the account is a minter, false if the account is not a minter.
*/
function isMinter(address account) external view returns (bool) {
return minters[account];
}
/**
* @notice Gets the remaining amount of fiat tokens a spender is allowed to transfer on
* behalf of the token owner.
* @param owner The token owner's address.
* @param spender The spender's address.
* @return The remaining allowance.
*/
function allowance(address owner, address spender)
external
override
view
returns (uint256)
{
return allowed[owner][spender];
}
/**
* @notice Gets the totalSupply of the fiat token.
* @return The totalSupply of the fiat token.
*/
function totalSupply() external override view returns (uint256) {
return totalSupply_;
}
/**
* @notice Gets the fiat token balance of an account.
* @param account The address to check.
* @return balance The fiat token balance of the account.
*/
function balanceOf(address account)
external
override
view
returns (uint256)
{
return _balanceOf(account);
}
/**
* @notice Sets a fiat token allowance for a spender to spend on behalf of the caller.
* @param spender The spender's address.
* @param value The allowance amount.
* @return True if the operation was successful.
*/
function approve(address spender, uint256 value)
external
virtual
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(spender)
returns (bool)
{
_approve(msg.sender, spender, value);
return true;
}
/**
* @dev Internal function to set allowance.
* @param owner Token owner's address.
* @param spender Spender's address.
* @param value Allowance amount.
*/
function _approve(
address owner,
address spender,
uint256 value
) internal override {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
allowed[owner][spender] = value;
emit Approval(owner, spender, value);
}
/**
* @notice Transfers tokens from an address to another by spending the caller's allowance.
* @dev The caller must have some fiat token allowance on the payer's tokens.
* @param from Payer's address.
* @param to Payee's address.
* @param value Transfer amount.
* @return True if the operation was successful.
*/
function transferFrom(
address from,
address to,
uint256 value
)
external
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(from)
notBlacklisted(to)
returns (bool)
{
require(
value <= allowed[from][msg.sender],
"ERC20: transfer amount exceeds allowance"
);
_transfer(from, to, value);
allowed[from][msg.sender] = allowed[from][msg.sender].sub(value);
return true;
}
/**
* @notice Transfers tokens from the caller.
* @param to Payee's address.
* @param value Transfer amount.
* @return True if the operation was successful.
*/
function transfer(address to, uint256 value)
external
override
whenNotPaused
notBlacklisted(msg.sender)
notBlacklisted(to)
returns (bool)
{
_transfer(msg.sender, to, value);
return true;
}
/**
* @dev Internal function to process transfers.
* @param from Payer's address.
* @param to Payee's address.
* @param value Transfer amount.
*/
function _transfer(
address from,
address to,
uint256 value
) internal override {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(
value <= _balanceOf(from),
"ERC20: transfer amount exceeds balance"
);
_setBalance(from, _balanceOf(from).sub(value));
_setBalance(to, _balanceOf(to).add(value));
emit Transfer(from, to, value);
}
/**
* @notice Adds or updates a new minter with a mint allowance.
* @param minter The address of the minter.
* @param minterAllowedAmount The minting amount allowed for the minter.
* @return True if the operation was successful.
*/
function configureMinter(address minter, uint256 minterAllowedAmount)
external
whenNotPaused
onlyMasterMinter
returns (bool)
{
minters[minter] = true;
minterAllowed[minter] = minterAllowedAmount;
emit MinterConfigured(minter, minterAllowedAmount);
return true;
}
/**
* @notice Removes a minter.
* @param minter The address of the minter to remove.
* @return True if the operation was successful.
*/
function removeMinter(address minter)
external
onlyMasterMinter
returns (bool)
{
minters[minter] = false;
minterAllowed[minter] = 0;
emit MinterRemoved(minter);
return true;
}
/**
* @notice Allows a minter to burn some of its own tokens.
* @dev The caller must be a minter, must not be blacklisted, and the amount to burn
* should be less than or equal to the account's balance.
* @param _amount the amount of tokens to be burned.
*/
function burn(uint256 _amount)
external
whenNotPaused
onlyMinters
notBlacklisted(msg.sender)
{
uint256 balance = _balanceOf(msg.sender);
require(_amount > 0, "FiatToken: burn amount not greater than 0");
require(balance >= _amount, "FiatToken: burn amount exceeds balance");
totalSupply_ = totalSupply_.sub(_amount);
_setBalance(msg.sender, balance.sub(_amount));
emit Burn(msg.sender, _amount);
emit Transfer(msg.sender, address(0), _amount);
}
/**
* @notice Updates the master minter address.
* @param _newMasterMinter The address of the new master minter.
*/
function updateMasterMinter(address _newMasterMinter) external onlyOwner {
require(
_newMasterMinter != address(0),
"FiatToken: new masterMinter is the zero address"
);
masterMinter = _newMasterMinter;
emit MasterMinterChanged(masterMinter);
}
/**
* @inheritdoc Blacklistable
*/
function _blacklist(address _account) internal override {
_setBlacklistState(_account, true);
}
/**
* @inheritdoc Blacklistable
*/
function _unBlacklist(address _account) internal override {
_setBlacklistState(_account, false);
}
/**
* @dev Helper method that sets the blacklist state of an account.
* @param _account The address of the account.
* @param _shouldBlacklist True if the account should be blacklisted, false if the account should be unblacklisted.
*/
function _setBlacklistState(address _account, bool _shouldBlacklist)
internal
virtual
{
_deprecatedBlacklisted[_account] = _shouldBlacklist;
}
/**
* @dev Helper method that sets the balance of an account.
* @param _account The address of the account.
* @param _balance The new fiat token balance of the account.
*/
function _setBalance(address _account, uint256 _balance) internal virtual {
balanceAndBlacklistStates[_account] = _balance;
}
/**
* @inheritdoc Blacklistable
*/
function _isBlacklisted(address _account)
internal
virtual
override
view
returns (bool)
{
return _deprecatedBlacklisted[_account];
}
/**
* @dev Helper method to obtain the balance of an account.
* @param _account The address of the account.
* @return The fiat token balance of the account.
*/
function _balanceOf(address _account)
internal
virtual
view
returns (uint256)
{
return balanceAndBlacklistStates[_account];
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { Ownable } from "./Ownable.sol";
/**
* @title Blacklistable Token
* @dev Allows accounts to be blacklisted by a "blacklister" role
*/
abstract contract Blacklistable is Ownable {
address public blacklister;
mapping(address => bool) internal _deprecatedBlacklisted;
event Blacklisted(address indexed _account);
event UnBlacklisted(address indexed _account);
event BlacklisterChanged(address indexed newBlacklister);
/**
* @dev Throws if called by any account other than the blacklister.
*/
modifier onlyBlacklister() {
require(
msg.sender == blacklister,
"Blacklistable: caller is not the blacklister"
);
_;
}
/**
* @dev Throws if argument account is blacklisted.
* @param _account The address to check.
*/
modifier notBlacklisted(address _account) {
require(
!_isBlacklisted(_account),
"Blacklistable: account is blacklisted"
);
_;
}
/**
* @notice Checks if account is blacklisted.
* @param _account The address to check.
* @return True if the account is blacklisted, false if the account is not blacklisted.
*/
function isBlacklisted(address _account) external view returns (bool) {
return _isBlacklisted(_account);
}
/**
* @notice Adds account to blacklist.
* @param _account The address to blacklist.
*/
function blacklist(address _account) external onlyBlacklister {
_blacklist(_account);
emit Blacklisted(_account);
}
/**
* @notice Removes account from blacklist.
* @param _account The address to remove from the blacklist.
*/
function unBlacklist(address _account) external onlyBlacklister {
_unBlacklist(_account);
emit UnBlacklisted(_account);
}
/**
* @notice Updates the blacklister address.
* @param _newBlacklister The address of the new blacklister.
*/
function updateBlacklister(address _newBlacklister) external onlyOwner {
require(
_newBlacklister != address(0),
"Blacklistable: new blacklister is the zero address"
);
blacklister = _newBlacklister;
emit BlacklisterChanged(blacklister);
}
/**
* @dev Checks if account is blacklisted.
* @param _account The address to check.
* @return true if the account is blacklisted, false otherwise.
*/
function _isBlacklisted(address _account)
internal
virtual
view
returns (bool);
/**
* @dev Helper method that blacklists an account.
* @param _account The address to blacklist.
*/
function _blacklist(address _account) internal virtual;
/**
* @dev Helper method that unblacklists an account.
* @param _account The address to unblacklist.
*/
function _unBlacklist(address _account) internal virtual;
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
abstract contract AbstractFiatTokenV1 is IERC20 {
function _approve(
address owner,
address spender,
uint256 value
) internal virtual;
function _transfer(
address from,
address to,
uint256 value
) internal virtual;
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { Ownable } from "../v1/Ownable.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
contract Rescuable is Ownable {
using SafeERC20 for IERC20;
address private _rescuer;
event RescuerChanged(address indexed newRescuer);
/**
* @notice Returns current rescuer
* @return Rescuer's address
*/
function rescuer() external view returns (address) {
return _rescuer;
}
/**
* @notice Revert if called by any account other than the rescuer.
*/
modifier onlyRescuer() {
require(msg.sender == _rescuer, "Rescuable: caller is not the rescuer");
_;
}
/**
* @notice Rescue ERC20 tokens locked up in this contract.
* @param tokenContract ERC20 token contract address
* @param to Recipient address
* @param amount Amount to withdraw
*/
function rescueERC20(
IERC20 tokenContract,
address to,
uint256 amount
) external onlyRescuer {
tokenContract.safeTransfer(to, amount);
}
/**
* @notice Updates the rescuer address.
* @param newRescuer The address of the new rescuer.
*/
function updateRescuer(address newRescuer) external onlyOwner {
require(
newRescuer != address(0),
"Rescuable: new rescuer is the zero address"
);
_rescuer = newRescuer;
emit RescuerChanged(newRescuer);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { FiatTokenV1 } from "../v1/FiatTokenV1.sol";
import { Rescuable } from "./Rescuable.sol";
/**
* @title FiatTokenV1_1
* @dev ERC20 Token backed by fiat reserves
*/
contract FiatTokenV1_1 is FiatTokenV1, Rescuable {
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
import { ECRecover } from "./ECRecover.sol";
import { IERC1271 } from "../interface/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECRecover.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets.
*
* Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/SignatureChecker.sol
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECRecover.recover`.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*/
function isValidSignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) external view returns (bool) {
if (!isContract(signer)) {
return ECRecover.recover(digest, signature) == signer;
}
return isValidERC1271SignatureNow(signer, digest, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
* @param signer Address of the claimed signer
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 digest,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(
IERC1271.isValidSignature.selector,
digest,
signature
)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) ==
bytes32(IERC1271.isValidSignature.selector));
}
/**
* @dev Checks if the input address is a smart contract.
*/
function isContract(address addr) internal view returns (bool) {
uint256 size;
assembly {
size := extcodesize(addr)
}
return size > 0;
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
* Adapted from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/21bb89ef5bfc789b9333eb05e3ba2b7b284ac77c/contracts/utils/cryptography/MessageHashUtils.sol
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\\x19\\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* @param domainSeparator Domain separator
* @param structHash Hashed EIP-712 data struct
* @return digest The keccak256 digest of an EIP-712 typed data
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash)
internal
pure
returns (bytes32 digest)
{
assembly {
let ptr := mload(0x40)
mstore(ptr, "\\x19\\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @title EIP712
* @notice A library that provides EIP712 helper functions
*/
library EIP712 {
/**
* @notice Make EIP712 domain separator
* @param name Contract name
* @param version Contract version
* @param chainId Blockchain ID
* @return Domain separator
*/
function makeDomainSeparator(
string memory name,
string memory version,
uint256 chainId
) internal view returns (bytes32) {
return
keccak256(
abi.encode(
// keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
address(this)
)
);
}
/**
* @notice Make EIP712 domain separator
* @param name Contract name
* @param version Contract version
* @return Domain separator
*/
function makeDomainSeparator(string memory name, string memory version)
internal
view
returns (bytes32)
{
uint256 chainId;
assembly {
chainId := chainid()
}
return makeDomainSeparator(name, version, chainId);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @title ECRecover
* @notice A library that provides a safe ECDSA recovery function
*/
library ECRecover {
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/65e4ffde586ec89af3b7e9140bdc9235d1254853/contracts/cryptography/ECDSA.sol
* Modifications: Accept v, r, and s as separate arguments
* @param digest Keccak-256 hash digest of the signed message
* @param v v of the signature
* @param r r of the signature
* @param s s of the signature
* @return Signer address
*/
function recover(
bytes32 digest,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (
uint256(s) >
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0
) {
revert("ECRecover: invalid signature 's' value");
}
if (v != 27 && v != 28) {
revert("ECRecover: invalid signature 'v' value");
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(digest, v, r, s);
require(signer != address(0), "ECRecover: invalid signature");
return signer;
}
/**
* @notice Recover signer's address from a signed message
* @dev Adapted from: https://github.com/OpenZeppelin/openzeppelin-contracts/blob/0053ee040a7ff1dbc39691c9e67a69f564930a88/contracts/utils/cryptography/ECDSA.sol
* @param digest Keccak-256 hash digest of the signed message
* @param signature Signature byte array associated with hash
* @return Signer address
*/
function recover(bytes32 digest, bytes memory signature)
internal
pure
returns (address)
{
require(signature.length == 65, "ECRecover: invalid signature length");
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return recover(digest, v, r, s);
}
}
/**
* SPDX-License-Identifier: Apache-2.0
*
* Copyright (c) 2023, Circle Internet Financial, LLC.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity 0.6.12;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with the provided data hash
* @return magicValue bytes4 magic value 0x1626ba7e when function passes
*/
function isValidSignature(bytes32 hash, bytes memory signature)
external
view
returns (bytes4 magicValue);
}
File 7 of 7: GSP
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {GSPTrader} from "./GSPTrader.sol";
import {GSPFunding} from "./GSPFunding.sol";
import {GSPVault} from "./GSPVault.sol";
/**
* @title DODO GasSavingPool
* @author DODO Breeder
*
* @notice DODO GasSavingPool initialization
*/
contract GSP is GSPTrader, GSPFunding {
/**
* @notice Function will be called in factory, init risk should not be included.
* @param maintainer The dodo's address, who can claim mtFee and own this pool
* @param admin oracle owner address, who can set price.
* @param baseTokenAddress The base token address
* @param quoteTokenAddress The quote token address
* @param lpFeeRate The rate of lp fee, with 18 decimal
* @param mtFeeRate The rate of mt fee, with 18 decimal
* @param i The oracle price, possible to be changed only by maintainer
* @param k The swap curve parameter
* @param priceLimit The limit of the setting range of the I
* @param isOpenTWAP Useless, always false, just for compatible with old version pool
*/
function init(
address maintainer,
address admin,
address baseTokenAddress,
address quoteTokenAddress,
uint256 lpFeeRate,
uint256 mtFeeRate,
uint256 i,
uint256 k,
uint256 priceLimit,
bool isOpenTWAP
) external {
// GSP can only be initialized once
require(!_GSP_INITIALIZED_, "GSP_INITIALIZED");
// _GSP_INITIALIZED_ is set to true after initialization
_GSP_INITIALIZED_ = true;
// baseTokenAddress and quoteTokenAddress should not be the same
require(baseTokenAddress != quoteTokenAddress, "BASE_QUOTE_CAN_NOT_BE_SAME");
// _BASE_TOKEN_ and _QUOTE_TOKEN_ should be valid ERC20 tokens
_BASE_TOKEN_ = IERC20(baseTokenAddress);
_QUOTE_TOKEN_ = IERC20(quoteTokenAddress);
// i should be greater than 0 and less than 10**36
require(i > 0 && i <= 10**36);
_I_ = i;
// k should be greater than 0 and less than 10**18
require(k <= 10**18);
_K_ = k;
// _LP_FEE_RATE_ is set when initialization
_LP_FEE_RATE_ = lpFeeRate;
// _MT_FEE_RATE_ is set when initialization
_MT_FEE_RATE_ = mtFeeRate;
// _MAINTAINER_ is set when initialization, the address receives the fee
_MAINTAINER_ = maintainer;
_ADMIN_ = admin;
_PRICE_LIMIT_ = priceLimit;
// _IS_OPEN_TWAP_ is always false
_IS_OPEN_TWAP_ = false;
string memory connect = "_";
string memory suffix = "GSP";
// name of the shares is the combination of suffix, connect and string of the GSP
name = string(abi.encodePacked(suffix, connect, addressToShortString(address(this))));
// symbol of the shares is GLP
symbol = "GLP";
// decimals of the shares is the same as the base token decimals
decimals = IERC20Metadata(baseTokenAddress).decimals();
// initialize DOMAIN_SEPARATOR
buildDomainSeparator();
// ==========================================================================
}
// ============================== Permit ====================================
/**
* @notice DOMAIN_SEPARATOR is used for approve by signature
*/
function buildDomainSeparator() public returns (bytes32){
string memory connect = "_";
string memory suffix = "GSP";
// name of the shares is the combination of suffix, connect and string of the GSP
string memory name = string(abi.encodePacked(suffix, connect, addressToShortString(address(this))));
DOMAIN_SEPARATOR = keccak256(
abi.encode(
// keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'),
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
keccak256(bytes(name)),
keccak256(bytes("1")),
block.chainid,
address(this)
)
);
return DOMAIN_SEPARATOR;
}
/**
* @notice Convert the address to a shorter string
* @param _addr The address to convert
* @return A string representation of _addr in hexadecimal
*/
function addressToShortString(address _addr) public pure returns (string memory) {
bytes32 value = bytes32(uint256(uint160(_addr)));
bytes memory alphabet = "0123456789abcdef";
bytes memory str = new bytes(8);
for (uint256 i = 0; i < 4; i++) {
str[i * 2] = alphabet[uint8(value[i + 12] >> 4)];
str[1 + i * 2] = alphabet[uint8(value[i + 12] & 0x0f)];
}
return string(str);
}
// ============ Version Control ============
/**
* @notice Return the version of DODOGasSavingPool
* @return The current version is 1.0.1
*/
function version() external pure returns (string memory) {
return "GSP 1.0.1";
}
}
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
import {DecimalMath} from "../../lib/DecimalMath.sol";
import {PMMPricing} from "../../lib/PMMPricing.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {GSPStorage} from "./GSPStorage.sol";
contract GSPVault is GSPStorage {
using SafeERC20 for IERC20;
// ============ Modifiers ============
/// @notice Check whether the caller is maintainer
modifier onlyMaintainer() {
require(msg.sender == _MAINTAINER_, "ACCESS_DENIED");
_;
}
/// @notice Check whether the caller is admin
modifier onlyAdmin() {
require(msg.sender == _ADMIN_, "ADMIN_ACCESS_DENIED");
_;
}
// ============ Events ============
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
event Mint(address indexed user, uint256 value);
event Burn(address indexed user, uint256 value);
event MtFeeRateChange(uint256 newMtFee);
event LpFeeRateChange(uint256 newLpFee);
event IChange(uint256 newI);
event KChange(uint256 newK);
event WithdrawMtFee(address indexed token, uint256 amount);
// ============ View Functions ============
/**
* @notice Get the reserves of the pool
* @return baseReserve The base token reserve
* @return quoteReserve The quote token reserve
*/
function getVaultReserve() external view returns (uint256 baseReserve, uint256 quoteReserve) {
baseReserve = _BASE_RESERVE_;
quoteReserve = _QUOTE_RESERVE_;
}
/**
* @notice Get the fee rate of the pool
* @param user Useless, just keep the same interface with old version pool
* @return lpFeeRate The lp fee rate
* @return mtFeeRate The mt fee rate
*/
function getUserFeeRate(address user)
external
view
returns (uint256 lpFeeRate, uint256 mtFeeRate)
{
lpFeeRate = _LP_FEE_RATE_;
mtFeeRate = _MT_FEE_RATE_;
}
// ============ Asset In ============
/**
* @notice Get the amount of base token transferred in
* @dev The amount of base token input should be the base token reserve minus the mt fee in base token
* @return input The amount of base token transferred in
*/
function getBaseInput() public view returns (uint256 input) {
return _BASE_TOKEN_.balanceOf(address(this)) - uint256(_BASE_RESERVE_) - uint256(_MT_FEE_BASE_);
}
/**
* @notice Get the amount of quote token transferred in
* @dev The amount of quote token input should be the quote token reserve minus the mt fee in quote token
* @return input The amount of quote token transferred in
*/
function getQuoteInput() public view returns (uint256 input) {
return _QUOTE_TOKEN_.balanceOf(address(this)) - uint256(_QUOTE_RESERVE_) - uint256(_MT_FEE_QUOTE_);
}
// ============ Set States ============
/**
* @notice Set the reserves of the pool, internal use only
* @param baseReserve The base token reserve
* @param quoteReserve The quote token reserve
*/
function _setReserve(uint256 baseReserve, uint256 quoteReserve) internal {
// the reserves should be less than the max uint112
require(baseReserve <= type(uint112).max && quoteReserve <= type(uint112).max, "OVERFLOW");
_BASE_RESERVE_ = uint112(baseReserve);
_QUOTE_RESERVE_ = uint112(quoteReserve);
}
/**
* @notice Sync the reserves of the pool, internal use only
* @dev The balances of the pool should be actual balances minus the mt fee
*/
function _sync() internal {
uint256 baseBalance = _BASE_TOKEN_.balanceOf(address(this)) - uint256(_MT_FEE_BASE_);
uint256 quoteBalance = _QUOTE_TOKEN_.balanceOf(address(this)) - uint256(_MT_FEE_QUOTE_);
// the reserves should be less than the max uint112
require(baseBalance <= type(uint112).max && quoteBalance <= type(uint112).max, "OVERFLOW");
if (baseBalance != _BASE_RESERVE_) {
_BASE_RESERVE_ = uint112(baseBalance);
}
if (quoteBalance != _QUOTE_RESERVE_) {
_QUOTE_RESERVE_ = uint112(quoteBalance);
}
}
/// @notice Sync the reserves of the pool
function sync() external nonReentrant {
_sync();
}
/// @notice Correct the rState of the pool, details in pmm algorithm
function correctRState() public {
if (_RState_ == uint32(PMMPricing.RState.BELOW_ONE) && _BASE_RESERVE_<_BASE_TARGET_) {
_RState_ = uint32(PMMPricing.RState.ONE);
_BASE_TARGET_ = _BASE_RESERVE_;
_QUOTE_TARGET_ = _QUOTE_RESERVE_;
}
if (_RState_ == uint32(PMMPricing.RState.ABOVE_ONE) && _QUOTE_RESERVE_<_QUOTE_TARGET_) {
_RState_ = uint32(PMMPricing.RState.ONE);
_BASE_TARGET_ = _BASE_RESERVE_;
_QUOTE_TARGET_ = _QUOTE_RESERVE_;
}
}
/**
* @notice PriceLimit is used for oracle change protection
* @notice It sets a ratio where the relative deviation between the new price and the old price cannot exceed this ratio.
* @dev The default priceLimit is 1e3, the decimals of priceLimit is 1e6
* @param priceLimit The new price limit
*/
function adjustPriceLimit(uint256 priceLimit) external onlyAdmin {
// the default priceLimit is 1e3
require(priceLimit <= 1e6, "INVALID_PRICE_LIMIT");
_PRICE_LIMIT_ = priceLimit;
}
/**
* @notice Adjust oricle price i, only for admin
*/
function adjustPrice(uint256 i) external onlyAdmin {
// the difference between i and _I_ should be less than priceLimit
uint256 offset = i > _I_ ? i - _I_ : _I_ - i;
require((offset * 1e6 / _I_) <= _PRICE_LIMIT_, "EXCEED_PRICE_LIMIT");
_I_ = i;
emit IChange(i);
}
/**
* @notice Adjust mtFee rate, only for maintainer
* @dev The decimals of mtFee rate is 1e18
* @param mtFeeRate The new mtFee rate
*/
function adjustMtFeeRate(uint256 mtFeeRate) external onlyMaintainer {
require(mtFeeRate <= 10**18, "INVALID_MT_FEE_RATE");
_MT_FEE_RATE_ = mtFeeRate;
emit MtFeeRateChange(mtFeeRate);
}
/**
* @notice Adjust lpFee rate, only for maintainer
* @dev The decimals of lpFee rate is 1e18
* @param lpFeeRate The new lpFee rate
*/
function adjustLpFeeRate(uint256 lpFeeRate) external onlyMaintainer {
require(lpFeeRate <= 10**18, "INVALID_LP_FEE_RATE");
_LP_FEE_RATE_ = lpFeeRate;
emit LpFeeRateChange(lpFeeRate);
}
/**
* @notice Adjust swap curve parameter k, only for maintainer
* @dev The decimals of k is 1e18
* @param k The new swap curve parameter k
*/
function adjustK(uint256 k) external onlyMaintainer {
require(k <= 10**18, "INVALID_K");
_K_ = k;
emit KChange(k);
}
// ============ Asset Out ============
/**
* @notice Transfer base token out, internal use only
* @param to The address of the receiver
* @param amount The amount of base token to transfer out
*/
function _transferBaseOut(address to, uint256 amount) internal {
if (amount > 0) {
_BASE_TOKEN_.safeTransfer(to, amount);
}
}
/**
* @notice Transfer quote token out, internal use only
* @param to The address of the receiver
* @param amount The amount of quote token to transfer out
*/
function _transferQuoteOut(address to, uint256 amount) internal {
if (amount > 0) {
_QUOTE_TOKEN_.safeTransfer(to, amount);
}
}
/// @notice Maintainer withdraw mtFee, only for maintainer
function withdrawMtFeeTotal() external nonReentrant onlyMaintainer {
uint256 mtFeeQuote = _MT_FEE_QUOTE_;
uint256 mtFeeBase = _MT_FEE_BASE_;
_MT_FEE_QUOTE_ = 0;
_transferQuoteOut(_MAINTAINER_, mtFeeQuote);
_MT_FEE_BASE_ = 0;
_transferBaseOut(_MAINTAINER_, mtFeeBase);
emit WithdrawMtFee(address(_QUOTE_TOKEN_), mtFeeQuote);
emit WithdrawMtFee(address(_BASE_TOKEN_), mtFeeBase);
}
// ============ Shares (ERC20) ============
/**
* @dev Transfer token for a specified address
* @param to The address to transfer to.
* @param amount The amount to be transferred.
*/
function transfer(address to, uint256 amount) public returns (bool) {
require(amount <= _SHARES_[msg.sender], "BALANCE_NOT_ENOUGH");
_SHARES_[msg.sender] = _SHARES_[msg.sender] - (amount);
_SHARES_[to] = _SHARES_[to] + amount;
emit Transfer(msg.sender, to, amount);
return true;
}
/**
* @dev Gets the balance of the specified address.
* @param owner The address to query the the balance of.
* @return balance An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address owner) external view returns (uint256 balance) {
return _SHARES_[owner];
}
/**
* @dev Transfer tokens from one address to another
* @param from address The address which you want to send tokens from
* @param to address The address which you want to transfer to
* @param amount uint256 the amount of tokens to be transferred
*/
function transferFrom(
address from,
address to,
uint256 amount
) public returns (bool) {
require(amount <= _SHARES_[from], "BALANCE_NOT_ENOUGH");
require(amount <= _ALLOWED_[from][msg.sender], "ALLOWANCE_NOT_ENOUGH");
_SHARES_[from] = _SHARES_[from] - amount;
_SHARES_[to] = _SHARES_[to] + amount;
_ALLOWED_[from][msg.sender] = _ALLOWED_[from][msg.sender] - amount;
emit Transfer(from, to, amount);
return true;
}
/**
* @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
* @param spender The address which will spend the funds.
* @param amount The amount of tokens to be spent.
*/
function approve(address spender, uint256 amount) public returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
function _approve(
address owner,
address spender,
uint256 amount
) private {
_ALLOWED_[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Function to check the amount of tokens that an owner _ALLOWED_ to a spender.
* @param owner address The address which owns the funds.
* @param spender address The address which will spend the funds.
* @return A uint256 specifying the amount of tokens still available for the spender.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _ALLOWED_[owner][spender];
}
function _mint(address user, uint256 value) internal {
require(value > 1000, "MINT_AMOUNT_NOT_ENOUGH");
_SHARES_[user] = _SHARES_[user] + value;
totalSupply = totalSupply + value;
emit Mint(user, value);
emit Transfer(address(0), user, value);
}
function _burn(address user, uint256 value) internal {
_SHARES_[user] = _SHARES_[user] - value;
totalSupply = totalSupply - value;
emit Burn(user, value);
emit Transfer(user, address(0), value);
}
// ============================ Permit ======================================
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external {
require(deadline >= block.timestamp, "DODO_GSP_LP: EXPIRED");
bytes32 digest =
keccak256(
abi.encodePacked(
"\\x19\\x01",
DOMAIN_SEPARATOR,
keccak256(
abi.encode(
PERMIT_TYPEHASH,
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
);
address recoveredAddress = ecrecover(digest, v, r, s);
require(
recoveredAddress != address(0) && recoveredAddress == owner,
"DODO_GSP_LP: INVALID_SIGNATURE"
);
_approve(owner, spender, value);
}
}/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
import {GSPVault} from "./GSPVault.sol";
import {DecimalMath} from "../../lib/DecimalMath.sol";
import {IDODOCallee} from "../../intf/IDODOCallee.sol";
/// @notice this part focus on Lp tokens, mint and burn
contract GSPFunding is GSPVault {
// ============ Events ============
event BuyShares(address to, uint256 increaseShares, uint256 totalShares);
event SellShares(address payer, address to, uint256 decreaseShares, uint256 totalShares);
// ============ Buy & Sell Shares ============
/// @notice User mint Lp token and deposit tokens, the result is rounded down
/// @dev User first transfer baseToken and quoteToken to GSP, then call buyShares
/// @param to The address will receive shares
/// @return shares The amount of shares user will receive
/// @return baseInput The amount of baseToken user transfer to GSP
/// @return quoteInput The amount of quoteToken user transfer to GSP
function buyShares(address to)
external
nonReentrant
returns (
uint256 shares,
uint256 baseInput,
uint256 quoteInput
)
{
// The balance of baseToken and quoteToken should be the balance minus the fee
uint256 baseBalance = _BASE_TOKEN_.balanceOf(address(this)) - _MT_FEE_BASE_;
uint256 quoteBalance = _QUOTE_TOKEN_.balanceOf(address(this)) - _MT_FEE_QUOTE_;
// The reserve of baseToken and quoteToken
uint256 baseReserve = _BASE_RESERVE_;
uint256 quoteReserve = _QUOTE_RESERVE_;
// The amount of baseToken and quoteToken user transfer to GSP
baseInput = baseBalance - baseReserve;
quoteInput = quoteBalance - quoteReserve;
// BaseToken should be transferred to GSP before calling buyShares
require(baseInput > 0, "NO_BASE_INPUT");
// Round down when withdrawing. Therefore, never be a situation occuring balance is 0 but totalsupply is not 0
// But May Happen,reserve >0 But totalSupply = 0
if (totalSupply == 0) {
// case 1. initial supply
require(quoteBalance > 0, "ZERO_QUOTE_AMOUNT");
// The shares will be minted to user
shares = quoteBalance < DecimalMath.mulFloor(baseBalance, _I_)
? DecimalMath.divFloor(quoteBalance, _I_)
: baseBalance;
// The target will be updated
_BASE_TARGET_ = uint112(shares);
_QUOTE_TARGET_ = uint112(DecimalMath.mulFloor(shares, _I_));
require(_QUOTE_TARGET_ > 0, "QUOTE_TARGET_IS_ZERO");
// Lock 1001 shares permanently in first deposit
require(shares > 2001, "MINT_AMOUNT_NOT_ENOUGH");
_mint(address(0), 1001);
shares -= 1001;
} else if (baseReserve > 0 && quoteReserve > 0) {
// case 2. normal case
uint256 baseInputRatio = DecimalMath.divFloor(baseInput, baseReserve);
uint256 quoteInputRatio = DecimalMath.divFloor(quoteInput, quoteReserve);
uint256 mintRatio = quoteInputRatio < baseInputRatio ? quoteInputRatio : baseInputRatio;
// The shares will be minted to user
shares = DecimalMath.mulFloor(totalSupply, mintRatio);
// The target will be updated
_BASE_TARGET_ = uint112(uint256(_BASE_TARGET_) + (DecimalMath.mulFloor(uint256(_BASE_TARGET_), mintRatio)));
_QUOTE_TARGET_ = uint112(uint256(_QUOTE_TARGET_) + (DecimalMath.mulFloor(uint256(_QUOTE_TARGET_), mintRatio)));
}
// The shares will be minted to user
// The reserve will be updated
_mint(to, shares);
_setReserve(baseBalance, quoteBalance);
emit BuyShares(to, shares, _SHARES_[to]);
}
/// @notice User burn their lp and withdraw their tokens, the result is rounded down
/// @dev User call sellShares, the calculated baseToken and quoteToken amount should geater than minBaseToken and minQuoteToken
/// @param shareAmount The amount of shares user want to sell
/// @param to The address will receive baseToken and quoteToken
/// @param baseMinAmount The minimum amount of baseToken user want to receive
/// @param quoteMinAmount The minimum amount of quoteToken user want to receive
/// @param data The data will be passed to callee contract
/// @param deadline The deadline of this transaction
function sellShares(
uint256 shareAmount,
address to,
uint256 baseMinAmount,
uint256 quoteMinAmount,
bytes calldata data,
uint256 deadline
) external nonReentrant returns (uint256 baseAmount, uint256 quoteAmount) {
// The deadline should be greater than current timestamp
require(deadline >= block.timestamp, "TIME_EXPIRED");
// The amount of shares user want to sell should be less than user's balance
require(shareAmount <= _SHARES_[msg.sender], "GLP_NOT_ENOUGH");
// The balance of baseToken and quoteToken should be the balance minus the fee
uint256 baseBalance = _BASE_TOKEN_.balanceOf(address(this)) - _MT_FEE_BASE_;
uint256 quoteBalance = _QUOTE_TOKEN_.balanceOf(address(this)) - _MT_FEE_QUOTE_;
// The total shares of GSP
uint256 totalShares = totalSupply;
// The amount of baseToken and quoteToken user will receive is calculated by the ratio of user's shares to total shares
baseAmount = baseBalance * shareAmount / totalShares;
quoteAmount = quoteBalance * shareAmount / totalShares;
// The target will be updated
_BASE_TARGET_ = uint112(uint256(_BASE_TARGET_) - DecimalMath._divCeil((uint256(_BASE_TARGET_) * (shareAmount)), totalShares));
_QUOTE_TARGET_ = uint112(uint256(_QUOTE_TARGET_) - DecimalMath._divCeil((uint256(_QUOTE_TARGET_) * (shareAmount)), totalShares));
// The calculated baseToken and quoteToken amount should geater than minBaseToken and minQuoteToken
require(
baseAmount >= baseMinAmount && quoteAmount >= quoteMinAmount,
"WITHDRAW_NOT_ENOUGH"
);
// The shares will be burned from user
// The baseToken and quoteToken will be transferred to user
// The reserve will be synced
_burn(msg.sender, shareAmount);
_transferBaseOut(to, baseAmount);
_transferQuoteOut(to, quoteAmount);
_sync();
// If the data is not empty, the callee contract will be called
if (data.length > 0) {
//Same as DVM
IDODOCallee(to).DVMSellShareCall(
msg.sender,
shareAmount,
baseAmount,
quoteAmount,
data
);
}
emit SellShares(msg.sender, to, shareAmount, _SHARES_[msg.sender]);
}
}
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
import {GSPVault} from "./GSPVault.sol";
import {DecimalMath} from "../../lib/DecimalMath.sol";
import {PMMPricing} from "../../lib/PMMPricing.sol";
import {IDODOCallee} from "../../intf/IDODOCallee.sol";
/// @notice this contract deal with swap
contract GSPTrader is GSPVault {
// ============ Events ============
event DODOSwap(
address fromToken,
address toToken,
uint256 fromAmount,
uint256 toAmount,
address trader,
address receiver
);
event DODOFlashLoan(address borrower, address assetTo, uint256 baseAmount, uint256 quoteAmount);
event RChange(PMMPricing.RState newRState);
// ============ Trade Functions ============
/**
* @notice User sell base tokens, user pay tokens first. Must be used with a router
* @dev The base token balance is the actual balance minus the mt fee
* @param to The recipient of the output
* @return receiveQuoteAmount Amount of quote token received
*/
function sellBase(address to) external nonReentrant returns (uint256 receiveQuoteAmount) {
uint256 baseBalance = _BASE_TOKEN_.balanceOf(address(this)) - _MT_FEE_BASE_;
uint256 baseInput = baseBalance - uint256(_BASE_RESERVE_);
uint256 mtFee;
uint256 newBaseTarget;
PMMPricing.RState newRState;
// calculate the amount of quote token to receive and mt fee
(receiveQuoteAmount, mtFee, newRState, newBaseTarget) = querySellBase(tx.origin, baseInput);
// transfer quote token to recipient
_transferQuoteOut(to, receiveQuoteAmount);
// update mt fee in quote token
_MT_FEE_QUOTE_ = _MT_FEE_QUOTE_ + mtFee;
// update TARGET
if (_RState_ != uint32(newRState)) {
require(newBaseTarget <= type(uint112).max, "OVERFLOW");
_BASE_TARGET_ = uint112(newBaseTarget);
_RState_ = uint32(newRState);
emit RChange(newRState);
}
// update reserve
_setReserve(baseBalance, _QUOTE_TOKEN_.balanceOf(address(this)) - _MT_FEE_QUOTE_);
emit DODOSwap(
address(_BASE_TOKEN_),
address(_QUOTE_TOKEN_),
baseInput,
receiveQuoteAmount,
msg.sender,
to
);
}
/**
* @notice User sell quote tokens, user pay tokens first. Must be used with a router
* @param to The recipient of the output
* @return receiveBaseAmount Amount of base token received
*/
function sellQuote(address to) external nonReentrant returns (uint256 receiveBaseAmount) {
uint256 quoteBalance = _QUOTE_TOKEN_.balanceOf(address(this)) - _MT_FEE_QUOTE_;
uint256 quoteInput = quoteBalance - uint256(_QUOTE_RESERVE_);
uint256 mtFee;
uint256 newQuoteTarget;
PMMPricing.RState newRState;
// calculate the amount of base token to receive and mt fee
(receiveBaseAmount, mtFee, newRState, newQuoteTarget) = querySellQuote(
tx.origin,
quoteInput
);
// transfer base token to recipient
_transferBaseOut(to, receiveBaseAmount);
// update mt fee in base token
_MT_FEE_BASE_ = _MT_FEE_BASE_ + mtFee;
// update TARGET
if (_RState_ != uint32(newRState)) {
require(newQuoteTarget <= type(uint112).max, "OVERFLOW");
_QUOTE_TARGET_ = uint112(newQuoteTarget);
_RState_ = uint32(newRState);
emit RChange(newRState);
}
// update reserve
_setReserve((_BASE_TOKEN_.balanceOf(address(this)) - _MT_FEE_BASE_), quoteBalance);
emit DODOSwap(
address(_QUOTE_TOKEN_),
address(_BASE_TOKEN_),
quoteInput,
receiveBaseAmount,
msg.sender,
to
);
}
/**
* @notice inner flashloan, pay tokens out first, call external contract and check tokens left
* @param baseAmount The base token amount user require
* @param quoteAmount The quote token amount user require
* @param assetTo The address who uses above tokens
* @param data The external contract's callData
*/
function flashLoan(
uint256 baseAmount,
uint256 quoteAmount,
address assetTo,
bytes calldata data
) external nonReentrant {
_transferBaseOut(assetTo, baseAmount);
_transferQuoteOut(assetTo, quoteAmount);
if (data.length > 0)
IDODOCallee(assetTo).DSPFlashLoanCall(msg.sender, baseAmount, quoteAmount, data);
uint256 baseBalance = _BASE_TOKEN_.balanceOf(address(this)) - _MT_FEE_BASE_;
uint256 quoteBalance = _QUOTE_TOKEN_.balanceOf(address(this)) - _MT_FEE_QUOTE_;
// no input -> pure loss
require(
baseBalance >= _BASE_RESERVE_ || quoteBalance >= _QUOTE_RESERVE_,
"FLASH_LOAN_FAILED"
);
// sell quote case
// quote input + base output
if (baseBalance < _BASE_RESERVE_) {
uint256 quoteInput = quoteBalance - uint256(_QUOTE_RESERVE_);
(
uint256 receiveBaseAmount,
uint256 mtFee,
PMMPricing.RState newRState,
uint256 newQuoteTarget
) = querySellQuote(tx.origin, quoteInput); // revert if quoteBalance<quoteReserve
require(
(uint256(_BASE_RESERVE_) - baseBalance) <= receiveBaseAmount,
"FLASH_LOAN_FAILED"
);
_MT_FEE_BASE_ = _MT_FEE_BASE_ + mtFee;
if (_RState_ != uint32(newRState)) {
require(newQuoteTarget <= type(uint112).max, "OVERFLOW");
_QUOTE_TARGET_ = uint112(newQuoteTarget);
_RState_ = uint32(newRState);
emit RChange(newRState);
}
emit DODOSwap(
address(_QUOTE_TOKEN_),
address(_BASE_TOKEN_),
quoteInput,
receiveBaseAmount,
msg.sender,
assetTo
);
}
// sell base case
// base input + quote output
if (quoteBalance < _QUOTE_RESERVE_) {
uint256 baseInput = baseBalance - uint256(_BASE_RESERVE_);
(
uint256 receiveQuoteAmount,
uint256 mtFee,
PMMPricing.RState newRState,
uint256 newBaseTarget
) = querySellBase(tx.origin, baseInput); // revert if baseBalance<baseReserve
require(
(uint256(_QUOTE_RESERVE_) - quoteBalance) <= receiveQuoteAmount,
"FLASH_LOAN_FAILED"
);
_MT_FEE_QUOTE_ = _MT_FEE_QUOTE_ + mtFee;
if (_RState_ != uint32(newRState)) {
require(newBaseTarget <= type(uint112).max, "OVERFLOW");
_BASE_TARGET_ = uint112(newBaseTarget);
_RState_ = uint32(newRState);
emit RChange(newRState);
}
emit DODOSwap(
address(_BASE_TOKEN_),
address(_QUOTE_TOKEN_),
baseInput,
receiveQuoteAmount,
msg.sender,
assetTo
);
}
_sync();
emit DODOFlashLoan(msg.sender, assetTo, baseAmount, quoteAmount);
}
// ============ Query Functions ============
/**
* @notice Return swap result, for query, sellBase side.
* @param trader Useless, just to keep the same interface with old version pool
* @param payBaseAmount The amount of base token user want to sell
* @return receiveQuoteAmount The amount of quote token user will receive
* @return mtFee The amount of mt fee charged
* @return newRState The new RState after swap
* @return newBaseTarget The new base target after swap
*/
function querySellBase(address trader, uint256 payBaseAmount)
public
view
returns (
uint256 receiveQuoteAmount,
uint256 mtFee,
PMMPricing.RState newRState,
uint256 newBaseTarget
)
{
PMMPricing.PMMState memory state = getPMMState();
(receiveQuoteAmount, newRState) = PMMPricing.sellBaseToken(state, payBaseAmount);
uint256 lpFeeRate = _LP_FEE_RATE_;
uint256 mtFeeRate = _MT_FEE_RATE_;
mtFee = DecimalMath.mulFloor(receiveQuoteAmount, mtFeeRate);
receiveQuoteAmount = receiveQuoteAmount
- DecimalMath.mulFloor(receiveQuoteAmount, lpFeeRate)
- mtFee;
newBaseTarget = state.B0;
}
/**
* @notice Return swap result, for query, sellQuote side
* @param trader Useless, just for keeping the same interface with old version pool
* @param payQuoteAmount The amount of quote token user want to sell
* @return receiveBaseAmount The amount of base token user will receive
* @return mtFee The amount of mt fee charged
* @return newRState The new RState after swap
* @return newQuoteTarget The new quote target after swap
*/
function querySellQuote(address trader, uint256 payQuoteAmount)
public
view
returns (
uint256 receiveBaseAmount,
uint256 mtFee,
PMMPricing.RState newRState,
uint256 newQuoteTarget
)
{
PMMPricing.PMMState memory state = getPMMState();
(receiveBaseAmount, newRState) = PMMPricing.sellQuoteToken(state, payQuoteAmount);
uint256 lpFeeRate = _LP_FEE_RATE_;
uint256 mtFeeRate = _MT_FEE_RATE_;
mtFee = DecimalMath.mulFloor(receiveBaseAmount, mtFeeRate);
receiveBaseAmount = receiveBaseAmount
- DecimalMath.mulFloor(receiveBaseAmount, lpFeeRate)
- mtFee;
newQuoteTarget = state.Q0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
import {DODOMath} from "../../lib/DODOMath.sol";
import {DecimalMath} from "../../lib/DecimalMath.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {PMMPricing} from "../../lib/PMMPricing.sol";
/// @notice this contract is used for store state and read state
contract GSPStorage is ReentrancyGuard {
// ============ Storage for Setup ============
// _GSP_INITIALIZED_ will be set to true when the init function is called
bool internal _GSP_INITIALIZED_;
// GSP does not open TWAP by default
// _IS_OPEN_TWAP_ can be set to true when the init function is called
bool public _IS_OPEN_TWAP_ = false;
// ============ Core Address ============
// _MAINTAINER_ is the maintainer of GSP
address public _MAINTAINER_;
// _ADMIN_ can set price
address public _ADMIN_;
// _BASE_TOKEN_ and _QUOTE_TOKEN_ should be ERC20 token
IERC20 public _BASE_TOKEN_;
IERC20 public _QUOTE_TOKEN_;
// _BASE_RESERVE_ and _QUOTE_RESERVE_ are the current reserves of the GSP
uint112 public _BASE_RESERVE_;
uint112 public _QUOTE_RESERVE_;
// _BLOCK_TIMESTAMP_LAST_ is used when calculating TWAP
uint32 public _BLOCK_TIMESTAMP_LAST_;
// _BASE_PRICE_CUMULATIVE_LAST_ is used when calculating TWAP
uint256 public _BASE_PRICE_CUMULATIVE_LAST_;
// _BASE_TARGET_ and _QUOTE_TARGET_ are recalculated when the pool state changes
uint112 public _BASE_TARGET_;
uint112 public _QUOTE_TARGET_;
// _RState_ is the current R state of the GSP
uint32 public _RState_;
// ============ Shares (ERC20) ============
// symbol is the symbol of the shares
string public symbol;
// decimals is the decimals of the shares
uint8 public decimals;
// name is the name of the shares
string public name;
// totalSupply is the total supply of the shares
uint256 public totalSupply;
// _SHARES_ is the mapping from account to share balance, record the share balance of each account
mapping(address => uint256) internal _SHARES_;
mapping(address => mapping(address => uint256)) internal _ALLOWED_;
// ================= Permit ======================
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH =
0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint256) public nonces;
// ============ Variables for Pricing ============
// _MT_FEE_RATE_ is the fee rate of mt fee
uint256 public _MT_FEE_RATE_;
// _LP_FEE_RATE_ is the fee rate of lp fee
uint256 public _LP_FEE_RATE_;
uint256 public _K_;
uint256 public _I_;
// _PRICE_LIMIT_ is used to limit the setting range of I
uint256 public _PRICE_LIMIT_;
// ============ Mt Fee ============
// _MT_FEE_BASE_ represents the mt fee in base token
uint256 public _MT_FEE_BASE_;
// _MT_FEE_QUOTE_ represents the mt fee in quote token
uint256 public _MT_FEE_QUOTE_;
// _MT_FEE_RATE_MODEL_ is useless, just for compatible with old version pool
address public _MT_FEE_RATE_MODEL_ = address(0);
// ============ Helper Functions ============
/// @notice Return the PMM state of the pool from inner or outside
/// @dev B0 and Q0 are calculated in adjustedTarget
/// @return state The current PMM state
function getPMMState() public view returns (PMMPricing.PMMState memory state) {
state.i = _I_;
state.K = _K_;
state.B = _BASE_RESERVE_;
state.Q = _QUOTE_RESERVE_;
state.B0 = _BASE_TARGET_; // will be calculated in adjustedTarget
state.Q0 = _QUOTE_TARGET_;
state.R = PMMPricing.RState(_RState_);
PMMPricing.adjustedTarget(state);
}
/// @notice Return the PMM state variables used for routeHelpers
/// @return i The price index
/// @return K The K value
/// @return B The base token reserve
/// @return Q The quote token reserve
/// @return B0 The base token target
/// @return Q0 The quote token target
/// @return R The R state of the pool
function getPMMStateForCall()
external
view
returns (
uint256 i,
uint256 K,
uint256 B,
uint256 Q,
uint256 B0,
uint256 Q0,
uint256 R
)
{
PMMPricing.PMMState memory state = getPMMState();
i = state.i;
K = state.K;
B = state.B;
Q = state.Q;
B0 = state.B0;
Q0 = state.Q0;
R = uint256(state.R);
}
/// @notice Return the adjusted mid price
/// @return midPrice The current mid price
function getMidPrice() public view returns (uint256 midPrice) {
return PMMPricing.getMidPrice(getPMMState());
}
/// @notice Return the total mt fee maintainer can claim
/// @dev The total mt fee is represented in two types: in base token and in quote token
/// @return mtFeeBase The total mt fee in base token
/// @return mtFeeQuote The total mt fee in quote token
function getMtFeeTotal() public view returns (uint256 mtFeeBase, uint256 mtFeeQuote) {
mtFeeBase = _MT_FEE_BASE_;
mtFeeQuote = _MT_FEE_QUOTE_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
pragma experimental ABIEncoderV2;
import {DecimalMath} from "../lib/DecimalMath.sol";
import {DODOMath} from "../lib/DODOMath.sol";
/**
* @title Pricing
* @author DODO Breeder
*
* @notice DODO Pricing model
*/
library PMMPricing {
enum RState {ONE, ABOVE_ONE, BELOW_ONE}
struct PMMState {
uint256 i;
uint256 K;
uint256 B;
uint256 Q;
uint256 B0;
uint256 Q0;
RState R;
}
// ============ buy & sell ============
/**
* @notice Inner calculation based on pmm algorithm, sell base
* @param state The current PMM state
* @param payBaseAmount The amount of base token user want to sell
* @return receiveQuoteAmount The amount of quote token user will receive
* @return newR The new R status after swap
*/
function sellBaseToken(PMMState memory state, uint256 payBaseAmount)
internal
pure
returns (uint256 receiveQuoteAmount, RState newR)
{
if (state.R == RState.ONE) {
// case 1: R=1
// R falls below one
receiveQuoteAmount = _ROneSellBaseToken(state, payBaseAmount);
newR = RState.BELOW_ONE;
} else if (state.R == RState.ABOVE_ONE) {
uint256 backToOnePayBase = state.B0 - state.B;
uint256 backToOneReceiveQuote = state.Q - state.Q0;
// case 2: R>1
// complex case, R status depends on trading amount
if (payBaseAmount < backToOnePayBase) {
// case 2.1: R status do not change
receiveQuoteAmount = _RAboveSellBaseToken(state, payBaseAmount);
newR = RState.ABOVE_ONE;
if (receiveQuoteAmount > backToOneReceiveQuote) {
// [Important corner case!] may enter this branch when some precision problem happens. And consequently contribute to negative spare quote amount
// to make sure spare quote>=0, mannually set receiveQuote=backToOneReceiveQuote
receiveQuoteAmount = backToOneReceiveQuote;
}
} else if (payBaseAmount == backToOnePayBase) {
// case 2.2: R status changes to ONE
receiveQuoteAmount = backToOneReceiveQuote;
newR = RState.ONE;
} else {
// case 2.3: R status changes to BELOW_ONE
receiveQuoteAmount = backToOneReceiveQuote + (
_ROneSellBaseToken(state, (payBaseAmount - backToOnePayBase))
);
newR = RState.BELOW_ONE;
}
} else {
// state.R == RState.BELOW_ONE
// case 3: R<1
receiveQuoteAmount = _RBelowSellBaseToken(state, payBaseAmount);
newR = RState.BELOW_ONE;
}
}
/**
* @notice Inner calculation based on pmm algorithm, sell quote
* @param state The current PMM state
* @param payQuoteAmount The amount of quote token user want to sell
* @return receiveBaseAmount The amount of base token user will receive
* @return newR The new R status after swap
*/
function sellQuoteToken(PMMState memory state, uint256 payQuoteAmount)
internal
pure
returns (uint256 receiveBaseAmount, RState newR)
{
if (state.R == RState.ONE) {
receiveBaseAmount = _ROneSellQuoteToken(state, payQuoteAmount);
newR = RState.ABOVE_ONE;
} else if (state.R == RState.ABOVE_ONE) {
receiveBaseAmount = _RAboveSellQuoteToken(state, payQuoteAmount);
newR = RState.ABOVE_ONE;
} else {
uint256 backToOnePayQuote = state.Q0 - state.Q;
uint256 backToOneReceiveBase = state.B - state.B0;
if (payQuoteAmount < backToOnePayQuote) {
receiveBaseAmount = _RBelowSellQuoteToken(state, payQuoteAmount);
newR = RState.BELOW_ONE;
if (receiveBaseAmount > backToOneReceiveBase) {
receiveBaseAmount = backToOneReceiveBase;
}
} else if (payQuoteAmount == backToOnePayQuote) {
receiveBaseAmount = backToOneReceiveBase;
newR = RState.ONE;
} else {
receiveBaseAmount = backToOneReceiveBase + (
_ROneSellQuoteToken(state, payQuoteAmount - backToOnePayQuote)
);
newR = RState.ABOVE_ONE;
}
}
}
// ============ R = 1 cases ============
function _ROneSellBaseToken(PMMState memory state, uint256 payBaseAmount)
internal
pure
returns (
uint256 // receiveQuoteToken
)
{
// in theory Q2 <= targetQuoteTokenAmount
// however when amount is close to 0, precision problems may cause Q2 > targetQuoteTokenAmount
return
DODOMath._SolveQuadraticFunctionForTrade(
state.Q0,
state.Q0,
payBaseAmount,
state.i,
state.K
);
}
function _ROneSellQuoteToken(PMMState memory state, uint256 payQuoteAmount)
internal
pure
returns (
uint256 // receiveBaseToken
)
{
return
DODOMath._SolveQuadraticFunctionForTrade(
state.B0,
state.B0,
payQuoteAmount,
DecimalMath.reciprocalFloor(state.i),
state.K
);
}
// ============ R < 1 cases ============
function _RBelowSellQuoteToken(PMMState memory state, uint256 payQuoteAmount)
internal
pure
returns (
uint256 // receiveBaseToken
)
{
return
DODOMath._GeneralIntegrate(
state.Q0,
state.Q + payQuoteAmount,
state.Q,
DecimalMath.reciprocalFloor(state.i),
state.K
);
}
function _RBelowSellBaseToken(PMMState memory state, uint256 payBaseAmount)
internal
pure
returns (
uint256 // receiveQuoteToken
)
{
return
DODOMath._SolveQuadraticFunctionForTrade(
state.Q0,
state.Q,
payBaseAmount,
state.i,
state.K
);
}
// ============ R > 1 cases ============
function _RAboveSellBaseToken(PMMState memory state, uint256 payBaseAmount)
internal
pure
returns (
uint256 // receiveQuoteToken
)
{
return
DODOMath._GeneralIntegrate(
state.B0,
state.B + payBaseAmount,
state.B,
state.i,
state.K
);
}
function _RAboveSellQuoteToken(PMMState memory state, uint256 payQuoteAmount)
internal
pure
returns (
uint256 // receiveBaseToken
)
{
return
DODOMath._SolveQuadraticFunctionForTrade(
state.B0,
state.B,
payQuoteAmount,
DecimalMath.reciprocalFloor(state.i),
state.K
);
}
// ============ Helper functions ============
function adjustedTarget(PMMState memory state) internal pure {
if (state.R == RState.BELOW_ONE) {
state.Q0 = DODOMath._SolveQuadraticFunctionForTarget(
state.Q,
state.B - state.B0,
state.i,
state.K
);
} else if (state.R == RState.ABOVE_ONE) {
state.B0 = DODOMath._SolveQuadraticFunctionForTarget(
state.B,
state.Q - state.Q0,
DecimalMath.reciprocalFloor(state.i),
state.K
);
}
}
function getMidPrice(PMMState memory state) internal pure returns (uint256) {
if (state.R == RState.BELOW_ONE) {
uint256 R = DecimalMath.divFloor(state.Q0 * state.Q0 / state.Q, state.Q);
R = DecimalMath.ONE - state.K + (DecimalMath.mulFloor(state.K, R));
return DecimalMath.divFloor(state.i, R);
} else {
uint256 R = DecimalMath.divFloor(state.B0 * state.B0 / state.B, state.B);
R = DecimalMath.ONE - state.K + (DecimalMath.mulFloor(state.K, R));
return DecimalMath.mulFloor(state.i, R);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.16;
pragma experimental ABIEncoderV2;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
/**
* @title DecimalMath
* @author DODO Breeder
*
* @notice Functions for fixed point number with 18 decimals
*/
library DecimalMath {
uint256 internal constant ONE = 10 ** 18;
uint256 internal constant ONE2 = 10 ** 36;
function mul(uint256 target, uint256 d) internal pure returns (uint256) {
return target * d / (10 ** 18);
}
function mulFloor(uint256 target, uint256 d) internal pure returns (uint256) {
return target * d / (10 ** 18);
}
function mulCeil(uint256 target, uint256 d) internal pure returns (uint256) {
return _divCeil(target * d, 10 ** 18);
}
function div(uint256 target, uint256 d) internal pure returns (uint256) {
return target * (10 ** 18) / d;
}
function divFloor(uint256 target, uint256 d) internal pure returns (uint256) {
return target * (10 ** 18) / d;
}
function divCeil(uint256 target, uint256 d) internal pure returns (uint256) {
return _divCeil(target * (10 ** 18), d);
}
function reciprocalFloor(uint256 target) internal pure returns (uint256) {
return uint256(10 ** 36) / target;
}
function reciprocalCeil(uint256 target) internal pure returns (uint256) {
return _divCeil(uint256(10 ** 36), target);
}
function sqrt(uint256 target) internal pure returns (uint256) {
return Math.sqrt(target * ONE);
}
function powFloor(uint256 target, uint256 e) internal pure returns (uint256) {
if (e == 0) {
return 10 ** 18;
} else if (e == 1) {
return target;
} else {
uint256 p = powFloor(target, e / 2);
p = p * p / (10 ** 18);
if (e % 2 == 1) {
p = p * target / (10 ** 18);
}
return p;
}
}
function _divCeil(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 quotient = a / b;
uint256 remainder = a - quotient * b;
if (remainder > 0) {
return quotient + 1;
} else {
return quotient;
}
}
}
/*
Copyright 2020 DODO ZOO.
SPDX-License-Identifier: Apache-2.0
*/
pragma solidity 0.8.16;
pragma experimental ABIEncoderV2;
interface IDODOCallee {
function DVMSellShareCall(
address sender,
uint256 burnShareAmount,
uint256 baseAmount,
uint256 quoteAmount,
bytes calldata data
) external;
function DVMFlashLoanCall(
address sender,
uint256 baseAmount,
uint256 quoteAmount,
bytes calldata data
) external;
function DPPFlashLoanCall(
address sender,
uint256 baseAmount,
uint256 quoteAmount,
bytes calldata data
) external;
function DSPFlashLoanCall(
address sender,
uint256 baseAmount,
uint256 quoteAmount,
bytes calldata data
) external;
function CPCancelCall(
address sender,
uint256 amount,
bytes calldata data
) external;
\tfunction CPClaimBidCall(
address sender,
uint256 baseAmount,
uint256 quoteAmount,
bytes calldata data
) external;
function NFTRedeemCall(
address payable assetTo,
uint256 quoteAmount,
bytes calldata
) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.16;
pragma experimental ABIEncoderV2;
import {DecimalMath} from "./DecimalMath.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
/**
* @title DODOMath
* @author DODO Breeder
*
* @notice Functions for complex calculating. Including ONE Integration and TWO Quadratic solutions
*/
library DODOMath {
using Math for uint256;
/*
Integrate dodo curve from V1 to V2
require V0>=V1>=V2>0
res = (1-k)i(V1-V2)+ikV0*V0(1/V2-1/V1)
let V1-V2=delta
res = i*delta*(1-k+k(V0^2/V1/V2))
i is the price of V-res trading pair
support k=1 & k=0 case
[round down]
*/
function _GeneralIntegrate(
uint256 V0,
uint256 V1,
uint256 V2,
uint256 i,
uint256 k
) internal pure returns (uint256) {
require(V0 > 0, "TARGET_IS_ZERO");
uint256 fairAmount = i * (V1 - V2); // i*delta
if (k == 0) {
return fairAmount / DecimalMath.ONE;
}
uint256 V0V0V1V2 = DecimalMath.divFloor(V0 * V0 / V1, V2);
uint256 penalty = DecimalMath.mulFloor(k, V0V0V1V2); // k(V0^2/V1/V2)
return (DecimalMath.ONE - k + penalty) * fairAmount / DecimalMath.ONE2;
}
/*
Follow the integration function above
i*deltaB = (Q2-Q1)*(1-k+kQ0^2/Q1/Q2)
Assume Q2=Q0, Given Q1 and deltaB, solve Q0
i is the price of delta-V trading pair
give out target of V
support k=1 & k=0 case
[round down]
*/
function _SolveQuadraticFunctionForTarget(
uint256 V1,
uint256 delta,
uint256 i,
uint256 k
) internal pure returns (uint256) {
if (k == 0) {
return V1 + DecimalMath.mulFloor(i, delta);
}
// V0 = V1*(1+(sqrt-1)/2k)
// sqrt = √(1+4kidelta/V1)
// premium = 1+(sqrt-1)/2k
// uint256 sqrt = (4 * k).mul(i).mul(delta).div(V1).add(DecimalMath.ONE2).sqrt();
if (V1 == 0) {
return 0;
}
uint256 sqrt;
uint256 ki = 4 * k * i;
if (ki == 0) {
sqrt = DecimalMath.ONE;
} else if ((ki * delta) / ki == delta) {
sqrt =((ki * delta) / V1 + DecimalMath.ONE2).sqrt();
} else {
sqrt = (ki / V1 * delta + DecimalMath.ONE2).sqrt();
}
uint256 premium =
DecimalMath.divFloor(sqrt - DecimalMath.ONE, k * 2) + DecimalMath.ONE;
// V0 is greater than or equal to V1 according to the solution
return DecimalMath.mulFloor(V1, premium);
}
/*
Follow the integration expression above, we have:
i*deltaB = (Q2-Q1)*(1-k+kQ0^2/Q1/Q2)
Given Q1 and deltaB, solve Q2
This is a quadratic function and the standard version is
aQ2^2 + bQ2 + c = 0, where
a=1-k
-b=(1-k)Q1-kQ0^2/Q1+i*deltaB
c=-kQ0^2
and Q2=(-b+sqrt(b^2+4(1-k)kQ0^2))/2(1-k)
note: another root is negative, abondan
if deltaBSig=true, then Q2>Q1, user sell Q and receive B
if deltaBSig=false, then Q2<Q1, user sell B and receive Q
return |Q1-Q2|
as we only support sell amount as delta, the deltaB is always negative
the input ideltaB is actually -ideltaB in the equation
i is the price of delta-V trading pair
support k=1 & k=0 case
[round down]
*/
function _SolveQuadraticFunctionForTrade(
uint256 V0,
uint256 V1,
uint256 delta,
uint256 i,
uint256 k
) internal pure returns (uint256) {
require(V0 > 0, "TARGET_IS_ZERO");
if (delta == 0) {
return 0;
}
if (k == 0) {
// why v1
return DecimalMath.mulFloor(i, delta) > V1 ? V1 : DecimalMath.mulFloor(i, delta);
}
if (k == DecimalMath.ONE) {
// if k==1
// Q2=Q1/(1+ideltaBQ1/Q0/Q0)
// temp = ideltaBQ1/Q0/Q0
// Q2 = Q1/(1+temp)
// Q1-Q2 = Q1*(1-1/(1+temp)) = Q1*(temp/(1+temp))
// uint256 temp = i.mul(delta).mul(V1).div(V0.mul(V0));
uint256 temp;
uint256 idelta = i * (delta);
if (idelta == 0) {
temp = 0;
} else if ((idelta * V1) / idelta == V1) {
temp = (idelta * V1) / (V0 * V0);
} else {
temp = delta * (V1) / (V0) * (i) / (V0);
}
return V1 * (temp) / (temp + (DecimalMath.ONE));
}
// calculate -b value and sig
// b = kQ0^2/Q1-i*deltaB-(1-k)Q1
// part1 = (1-k)Q1 >=0
// part2 = kQ0^2/Q1-i*deltaB >=0
// bAbs = abs(part1-part2)
// if part1>part2 => b is negative => bSig is false
// if part2>part1 => b is positive => bSig is true
uint256 part2 = k * (V0) / (V1) * (V0) + (i * (delta)); // kQ0^2/Q1-i*deltaB
uint256 bAbs = (DecimalMath.ONE - k) * (V1); // (1-k)Q1
bool bSig;
if (bAbs >= part2) {
bAbs = bAbs - part2;
bSig = false;
} else {
bAbs = part2 - bAbs;
bSig = true;
}
bAbs = bAbs / (DecimalMath.ONE);
// calculate sqrt
uint256 squareRoot = DecimalMath.mulFloor((DecimalMath.ONE - k) * (4), DecimalMath.mulFloor(k, V0) * (V0)); // 4(1-k)kQ0^2
squareRoot = Math.sqrt((bAbs * bAbs) + squareRoot); // sqrt(b*b+4(1-k)kQ0*Q0)
// final res
uint256 denominator = (DecimalMath.ONE - k) * 2; // 2(1-k)
uint256 numerator;
if (bSig) {
numerator = squareRoot - bAbs;
if (numerator == 0) {
revert("DODOMath: should not be 0");
}
} else {
numerator = bAbs + squareRoot;
}
uint256 V2 = DecimalMath.divCeil(numerator, denominator);
if (V2 > V1) {
return 0;
} else {
return V1 - V2;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}