Transaction Hash:
Block:
24509433 at Feb-22-2026 02:30:59 AM +UTC
Transaction Fee:
0.000018545542999046 ETH
$0.04
Gas Used:
479,758 Gas / 0.038656037 Gwei
Emitted Events:
| 478 |
SPX.Transfer( from=[Sender] 0xe3921c7aa1a7d14a9ca59dbfb7273c1f12470670, to=[Receiver] Diamond, value=332512175 )
|
| 479 |
SPX.Approval( owner=[Sender] 0xe3921c7aa1a7d14a9ca59dbfb7273c1f12470670, spender=[Receiver] Diamond, value=115792089237316195423570985008687907853269984665640564039457584004037675300359 )
|
| 480 |
SPX.Approval( owner=[Receiver] Diamond, spender=LiFiDiamond, value=332512175 )
|
| 481 |
SPX.Transfer( from=[Receiver] Diamond, to=LiFiDiamond, value=332512175 )
|
| 482 |
SPX.Approval( owner=[Receiver] Diamond, spender=LiFiDiamond, value=0 )
|
| 483 |
SPX.Transfer( from=LiFiDiamond, to=MagpieRouterV3_1, value=332512175 )
|
| 484 |
SPX.Approval( owner=LiFiDiamond, spender=MagpieRouterV3_1, value=115792089237316195423570985008687907853269984665640564039457583993953580893262 )
|
| 485 |
SPX.Approval( owner=MagpieRouterV3_1, spender=MagpieRouterCore, value=332512175 )
|
| 486 |
SPX.Transfer( from=MagpieRouterV3_1, to=MagpieRouterCore, value=332512175 )
|
| 487 |
SPX.Approval( owner=MagpieRouterV3_1, spender=MagpieRouterCore, value=0 )
|
| 488 |
WETH9.Transfer( src=0xF53dcD757f208fB4f3631d16D8c17Ddb21A9D98D, dst=MagpieRouterCore, wad=534245822875180 )
|
| 489 |
SPX.Transfer( from=MagpieRouterCore, to=0xF53dcD757f208fB4f3631d16D8c17Ddb21A9D98D, value=332512175 )
|
| 490 |
SPX.Transfer( from=0xF53dcD757f208fB4f3631d16D8c17Ddb21A9D98D, to=0x85D63DC01cF69AC44580444A640250d50e63f9Df, value=656628 )
|
| 491 |
0xf53dcd757f208fb4f3631d16d8c17ddb21a9d98d.0x121cb44ee54098b1a04743c487e7460d8dd429b27f88b1f4d4767396e1a59f79( 0x121cb44ee54098b1a04743c487e7460d8dd429b27f88b1f4d4767396e1a59f79, 0x0000000000000000000000003611b82c7b13e72b26eb0e9be0613bee7a45ac7c, 0x0000000000000000000000003611b82c7b13e72b26eb0e9be0613bee7a45ac7c, fffffffffffffffffffffffffffffffffffffffffffffffffffe1a1b338139d4, 0000000000000000000000000000000000000000000000000000000013d1bbaf, 00000000000000000000000000000000000000000033cdaeca9d37d2a64bbd57, 00000000000000000000000000000000000000000000000000001fdd4f220c98, fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdd1ee, 0000000000000000000000000000000000000000000000000000000000001f77, 0000000000000000000000000000000000000000000000000000000000000000 )
|
| 492 |
WETH9.Withdrawal( src=MagpieRouterCore, wad=534245822875180 )
|
| 493 |
MagpieRouterV3_1.Swap( fromAddress=LiFiDiamond, toAddress=LiFiDiamond, fromAssetAddress=SPX, toAssetAddress=0x00000000...000000000, amountIn=332512175, amountOut=534245822875180 )
|
| 494 |
LiFiDiamond.0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38( 0x7bfdfdb5e3a3776976e53cb0607060f54c5312701c8cba1155cc4d5394440b38, 88904639cf755baf904b30f89d058d20bc753f4a0b11021788028bc0dbbcf42f, 000000000000000000000000a6e941eab67569ca4522f70d343714ff51d571c4, 000000000000000000000000e0f63a424a4439cbe457d80e4f4b51ad25b2c56c, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000013d1bbaf, 0000000000000000000000000000000000000000000000000001e5e4cc7ec62c, 00000000000000000000000000000000000000000000000000000000699a6a63 )
|
| 495 |
LiFiDiamond.0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537( 0x38eee76fd911eabac79da7af16053e809be0e12c8637f156e77e1af309b99537, 0x88904639cf755baf904b30f89d058d20bc753f4a0b11021788028bc0dbbcf42f, 00000000000000000000000000000000000000000000000000000000000000e0, 0000000000000000000000000000000000000000000000000000000000000120, 000000000000000000000000b300000b72deaeb607a12d5f54773d1c19c7028d, 000000000000000000000000e0f63a424a4439cbe457d80e4f4b51ad25b2c56c, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000013d1bbaf, 0000000000000000000000000000000000000000000000000001e5e4cc7ec62c, 000000000000000000000000000000000000000000000000000000000000000e, 5f62696e616e636577616c6c6574000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000002a, 3078303030303030303030303030303030303030303030303030303030303030, 3030303030303030303000000000000000000000000000000000000000000000 )
|
| 496 |
SPX.Approval( owner=[Receiver] Diamond, spender=LiFiDiamond, value=0 )
|
Account State Difference:
| Address | Before | After | State Difference | ||
|---|---|---|---|---|---|
|
0x4838B106...B0BAD5f97
Miner
| (Titan Builder) | 14.67441411662029998 Eth | 14.674414597612237556 Eth | 0.000000480991937576 | |
| 0x4c643647...d1e4769c5 | |||||
| 0xC02aaA39...83C756Cc2 | 2,065,949.162614555456804209 Eth | 2,065,949.162080309633929029 Eth | 0.00053424582287518 | ||
| 0xE0f63A42...D25b2c56C | |||||
| 0xE3921C7A...f12470670 |
1.090580274099577471 Eth
Nonce: 555
|
1.091095974379453605 Eth
Nonce: 556
| 0.000515700279876134 | ||
| 0xF53dcD75...b21A9D98D |
Execution Trace
Diamond.810c705b( )
0x7ec117ed6e17a0e8eb643d9d3864081090b41b59.810c705b( )-
SPX.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 0 )
-
SPX.transferFrom( sender=0xE3921C7AA1A7D14a9ca59DbFb7273C1f12470670, recipient=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, amount=332512175 ) => ( True )
-
SPX.approve( spender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, amount=332512175 ) => ( True )
LiFiDiamond.733214a3( )GenericSwapFacetV3.swapTokensSingleV3ERC20ToNative( _transactionId=88904639CF755BAF904B30F89D058D20BC753F4A0B11021788028BC0DBBCF42F, _integrator=_binancewallet, _referrer=0x0000000000000000000000000000000000000000, _receiver=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, _minAmountOut=530470466599379, _swapData=[{name:callTo, type:address, order:1, indexed:false, value:0xA6E941eaB67569ca4522f70d343714fF51d571c4, valueString:0xA6E941eaB67569ca4522f70d343714fF51d571c4}, {name:approveTo, type:address, order:2, indexed:false, value:0xA6E941eaB67569ca4522f70d343714fF51d571c4, valueString:0xA6E941eaB67569ca4522f70d343714fF51d571c4}, {name:sendingAssetId, type:address, order:3, indexed:false, value:0xE0f63A424a4439cBE457D80E4f4b51aD25b2c56C, valueString:0xE0f63A424a4439cBE457D80E4f4b51aD25b2c56C}, {name:receivingAssetId, type:address, order:4, indexed:false, value:0x0000000000000000000000000000000000000000, valueString:0x0000000000000000000000000000000000000000}, {name:fromAmount, type:uint256, order:5, indexed:false, value:332512175, valueString:332512175}, {name:callData, type:bytes, order:6, indexed:false, value:0x73FC4457000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000001D1019900801231DEB6F5749EF6CE6943A275A1D3E7486F4EAEE0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000000000000000000E000D4C800D9F800E1E000E3265F83794321366E5881F9C7F7319B104CA0B6E7C02BB96A5FF62BE3CAB8021B44E88B86A4125F9A315137B26AF07FF2A799829F0B905F895E622B1F073590861B0000E0699A6B85C801E275C7B9B9D3F800E013D1BBAF060300E2128ACB08000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000014E0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000100EB0603008A0300E20400EF0080F53DCD757F208FB4F3631D16D8C17DDB21A9D98D00070A000000000000000000000000000000000000000000000000000000000000030192050000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20201B905004002007002007002004805006002000000E700EB0000000040016F017E017E07002001B301B9000005000001CD01D3000006002001D301D6000003000001D601DF0000000000000000000000000000000000, valueString:0x73FC4457000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000001D1019900801231DEB6F5749EF6CE6943A275A1D3E7486F4EAEE0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000000000000000000E000D4C800D9F800E1E000E3265F83794321366E5881F9C7F7319B104CA0B6E7C02BB96A5FF62BE3CAB8021B44E88B86A4125F9A315137B26AF07FF2A799829F0B905F895E622B1F073590861B0000E0699A6B85C801E275C7B9B9D3F800E013D1BBAF060300E2128ACB08000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000014E0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000100EB0603008A0300E20400EF0080F53DCD757F208FB4F3631D16D8C17DDB21A9D98D00070A000000000000000000000000000000000000000000000000000000000000030192050000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20201B905004002007002007002004805006002000000E700EB0000000040016F017E017E07002001B301B9000005000001CD01D3000006002001D301D6000003000001D601DF0000000000000000000000000000000000}, {name:requiresDeposit, type:bool, order:7, indexed:false, value:true, valueString:True}] )-
SPX.transferFrom( sender=0xb300000b72DEAEb607a12d5f54773D1C19c7028d, recipient=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, amount=332512175 ) => ( True )
-
SPX.allowance( owner=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, spender=0xA6E941eaB67569ca4522f70d343714fF51d571c4 ) => ( 115792089237316195423570985008687907853269984665640564039457583993953913405437 )
MagpieRouterV3_1.swapWithMagpieSignature( 0x019900801231DEB6F5749EF6CE6943A275A1D3E7486F4EAEE0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000000000000000000E000D4C800D9F800E1E000E3265F83794321366E5881F9C7F7319B104CA0B6E7C02BB96A5FF62BE3CAB8021B44E88B86A4125F9A315137B26AF07FF2A799829F0B905F895E622B1F073590861B0000E0699A6B85C801E275C7B9B9D3F800E013D1BBAF060300E2128ACB08000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000014E0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000100EB0603008A0300E20400EF0080F53DCD757F208FB4F3631D16D8C17DDB21A9D98D00070A000000000000000000000000000000000000000000000000000000000000030192050000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20201B905004002007002007002004805006002000000E700EB0000000040016F017E017E07002001B301B9000005000001CD01D3000006002001D301D6000003000001D601DF0000 ) => ( amountOut=534245822875180 )-
Null: 0x000...001.1a5d9e14( ) -
SPX.transferFrom( sender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, recipient=0xA6E941eaB67569ca4522f70d343714fF51d571c4, amount=332512175 ) => ( True )
-
SPX.approve( spender=0x3611B82c7B13e72b26eb0E9BE0613bEE7A45aC7c, amount=332512175 ) => ( True )
MagpieRouterCore.swapWithoutSignature( 0x019900801231DEB6F5749EF6CE6943A275A1D3E7486F4EAEE0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000000000000000000E000D4C800D9F800E1E000E3265F83794321366E5881F9C7F7319B104CA0B6E7C02BB96A5FF62BE3CAB8021B44E88B86A4125F9A315137B26AF07FF2A799829F0B905F895E622B1F073590861B0000E0699A6B85C801E275C7B9B9D3F800E013D1BBAF060300E2128ACB08000000000000000000000000FFFD8963EFD1FC6A506488495D951D5263988D2500000000000000000000000000000000000000000000000000000000000000A00000000000000000000000000000000000000000000000000000000000000014E0F63A424A4439CBE457D80E4F4B51AD25B2C56C0000000000000000000000000100EB0603008A0300E20400EF0080F53DCD757F208FB4F3631D16D8C17DDB21A9D98D00070A000000000000000000000000000000000000000000000000000000000000030192050000C02AAA39B223FE8D0A0E5C4F27EAD9083C756CC20201B905004002007002007002004805006002000000E700EB0000000040016F017E017E07002001B301B9000005000001CD01D3000006002001D301D6000003000001D601DF0000 ) => ( amountOut=534245822875180, gasUsed=0 )-
SPX.transferFrom( sender=0xA6E941eaB67569ca4522f70d343714fF51d571c4, recipient=0x3611B82c7B13e72b26eb0E9BE0613bEE7A45aC7c, amount=332512175 ) => ( True )
-
0xf53dcd757f208fb4f3631d16d8c17ddb21a9d98d.128acb08( ) -
WETH9.withdraw( wad=534245822875180 )
- ETH 0.00053424582287518
LiFiDiamond.CALL( )
-
-
-
SPX.balanceOf( account=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE ) => ( 0 )
- ETH 0.00053424582287518
Diamond.CALL( )
-
-
SPX.approve( spender=0x1231DEB6f5749EF6cE6943a275A1D3E7486F4EaE, amount=0 ) => ( True )
- ETH 0.00053424582287518
0xe3921c7aa1a7d14a9ca59dbfb7273c1f12470670.CALL( ) -
SPX.balanceOf( account=0xb300000b72DEAEb607a12d5f54773D1C19c7028d ) => ( 0 )
-
File 1 of 7: Diamond
File 2 of 7: SPX
File 3 of 7: LiFiDiamond
File 4 of 7: MagpieRouterV3_1
File 5 of 7: MagpieRouterCore
File 6 of 7: WETH9
File 7 of 7: GenericSwapFacetV3
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {LibDiamond} from "./Libraries/LibDiamond.sol";
import {IDiamondCut} from "./Interfaces/IDiamondCut.sol";
import {LibUtil} from "./Libraries/LibUtil.sol";
contract Diamond {
constructor(address _contractOwner, address _diamondCutFacet) payable {
LibDiamond.setContractOwner(_contractOwner);
// Add the diamondCut external function from the diamondCutFacet
IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
bytes4[] memory functionSelectors = new bytes4[](1);
functionSelectors[0] = IDiamondCut.diamondCut.selector;
cut[0] = IDiamondCut.FacetCut({
facetAddress: _diamondCutFacet,
action: IDiamondCut.FacetCutAction.Add,
functionSelectors: functionSelectors
});
LibDiamond.diamondCut(cut, address(0), "");
}
// Find facet for function that is called and execute the
// function if a facet is found and return any value.
// solhint-disable-next-line no-complex-fallback
fallback() external payable {
LibDiamond.DiamondStorage storage ds;
bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
// get diamond storage
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
// get facet from function selector
address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
if (facet == address(0)) {
revert LibDiamond.FunctionDoesNotExist();
}
// Execute external function from facet using delegatecall and return any value.
// solhint-disable-next-line no-inline-assembly
assembly {
// copy function selector and any arguments
calldatacopy(0, 0, calldatasize())
// execute function call using the facet
let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
// get any return value
returndatacopy(0, 0, returndatasize())
// return any return value or error back to the caller
switch result
case 0 { revert(0, returndatasize()) }
default { return(0, returndatasize()) }
}
}
// Able to receive ether
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {IDiamondCut} from "../Interfaces/IDiamondCut.sol";
import {LibUtil} from "../Libraries/LibUtil.sol";
import {OnlyContractOwner} from "../Errors/GenericErrors.sol";
/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("com.binance.w3w.diamond.storage");
// Diamond specific errors
error IncorrectFacetCutAction();
error NoSelectorsInFace();
error FunctionAlreadyExists();
error FacetAddressIsZero();
error FacetAddressIsNotZero();
error FacetContainsNoCode();
error FunctionDoesNotExist();
error FunctionIsImmutable();
error InitZeroButCalldataNotEmpty();
error CalldataEmptyButInitNotZero();
error InitReverted();
// ----------------
struct FacetAddressAndPosition {
address facetAddress;
uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
}
struct FacetFunctionSelectors {
bytes4[] functionSelectors;
uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
}
struct DiamondStorage {
// maps function selector to the facet address and
// the position of the selector in the facetFunctionSelectors.selectors array
mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
// maps facet addresses to function selectors
mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
// facet addresses
address[] facetAddresses;
// Used to query if a contract implements an interface.
// Used to implement ERC-165.
mapping(bytes4 => bool) supportedInterfaces;
// owner of the contract
address contractOwner;
}
function diamondStorage() internal pure returns (DiamondStorage storage ds) {
bytes32 position = DIAMOND_STORAGE_POSITION;
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
}
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function setContractOwner(address _newOwner) internal {
DiamondStorage storage ds = diamondStorage();
address previousOwner = ds.contractOwner;
ds.contractOwner = _newOwner;
emit OwnershipTransferred(previousOwner, _newOwner);
}
function contractOwner() internal view returns (address contractOwner_) {
contractOwner_ = diamondStorage().contractOwner;
}
function enforceIsContractOwner() internal view {
if (msg.sender != diamondStorage().contractOwner) {
revert OnlyContractOwner();
}
}
event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
// Internal function version of diamondCut
function diamondCut(IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata) internal {
for (uint256 facetIndex; facetIndex < _diamondCut.length;) {
IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
if (action == IDiamondCut.FacetCutAction.Add) {
addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Replace) {
replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Remove) {
removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else {
revert IncorrectFacetCutAction();
}
unchecked {
++facetIndex;
}
}
emit DiamondCut(_diamondCut, _init, _calldata);
initializeDiamondCut(_init, _calldata);
}
function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (!LibUtil.isZeroAddress(oldFacetAddress)) {
revert FunctionAlreadyExists();
}
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (oldFacetAddress == _facetAddress) {
revert FunctionAlreadyExists();
}
removeFunction(ds, oldFacetAddress, selector);
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
// if function does not exist then do nothing and return
if (!LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsNotZero();
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length;) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
removeFunction(ds, oldFacetAddress, selector);
unchecked {
++selectorIndex;
}
}
}
function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
enforceHasContractCode(_facetAddress);
ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
ds.facetAddresses.push(_facetAddress);
}
function addFunction(DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress)
internal
{
ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
}
function removeFunction(DiamondStorage storage ds, address _facetAddress, bytes4 _selector) internal {
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FunctionDoesNotExist();
}
// an immutable function is a function defined directly in a diamond
if (_facetAddress == address(this)) {
revert FunctionIsImmutable();
}
// replace selector with last selector, then delete last selector
uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
// if not the same then replace _selector with lastSelector
if (selectorPosition != lastSelectorPosition) {
bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
}
// delete the last selector
ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
delete ds.selectorToFacetAndPosition[_selector];
// if no more selectors for facet address then delete the facet address
if (lastSelectorPosition == 0) {
// replace facet address with last facet address and delete last facet address
uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
if (facetAddressPosition != lastFacetAddressPosition) {
address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
}
ds.facetAddresses.pop();
delete ds
.facetFunctionSelectors[_facetAddress]
.facetAddressPosition;
}
}
function initializeDiamondCut(address _init, bytes memory _calldata) internal {
if (LibUtil.isZeroAddress(_init)) {
if (_calldata.length != 0) {
revert InitZeroButCalldataNotEmpty();
}
} else {
if (_calldata.length == 0) {
revert CalldataEmptyButInitNotZero();
}
if (_init != address(this)) {
enforceHasContractCode(_init);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory error) = _init.delegatecall(_calldata);
if (!success) {
if (error.length > 0) {
// bubble up the error
revert(string(error));
} else {
revert InitReverted();
}
}
}
}
function enforceHasContractCode(address _contract) internal view {
uint256 contractSize;
// solhint-disable-next-line no-inline-assembly
assembly {
contractSize := extcodesize(_contract)
}
if (contractSize == 0) {
revert FacetContainsNoCode();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
interface IDiamondCut {
// Add=0, Replace=1, Remove=2
enum FacetCutAction {
Add,
Replace,
Remove
}
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
/// @notice Add/replace/remove any number of functions and optionally execute
/// a function with delegatecall
/// @param _diamondCut Contains the facet addresses and function selectors
/// @param _init The address of the contract or facet to execute _calldata
/// @param _calldata A function call, including function selector and arguments
/// _calldata is executed with delegatecall on _init
function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external;
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
// If the _res length is less than 68, then the transaction failed silently (without a revert message)
if (_res.length < 68) return "Transaction reverted silently";
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
error OnlyContractOwner();
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
bytes16 private constant _SYMBOLS = "0123456789abcdef";
// -------------------------
function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
unchecked {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
if (_start + _length < _start) revert SliceOverflow();
}
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} { mstore(mc, mload(cc)) }
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
/// Copied from OpenZeppelin's `Strings.sol` utility library.
/// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
File 2 of 7: SPX
/**
@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@&/ ,@@@ .@@&@, @@@@@
@@@@@@@ ,%@@@@@@@@@@@@@@@@@, /@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@ @@@@@@@
@@@@@@@@@@@@@(. ,@@@@. @& @@@@@@@@@@
@@@@@@ @@@@@@@@@@@@@@@@% @& @@@@@@@@@@@@@ @@@ %@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@, &@@ .@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@/ (@@@. @@@# %,@@# %@@
@@@@ @@@@@@@@@@@@@@& (@@@, (@@@@@@@@@@@@& @. %@@@@@@@@@@@@/ ,@ &@@@@@@@@@@@@( *@@@
@(# /@ /@. %@ @@@@@@@@@@@@@ @@ @@@@@@@@@@@@@ @@@@@
@ @@@@@@@@@@@@@* ,@@@@@@@@@@@@@@@@@@@@@ @/ ,@@@@@@@@@@@@@ @/ ,@@@@@@@@@@@@@ @@@@@@
@ /@@% .@ @@ @@@@&@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
S&P 6900 (SPX)
Telegram: https://t.me/+BgknlP2VHjwwYjIx
Website: https://www.thestockmarketcoin.com/
Twitter: https://twitter.com/SPX6900
**/
// SPDX-License-Identifier: NONE
pragma solidity 0.8.19;
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
}
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
return c;
}
}
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
constructor () {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
}
interface IUniswapV2Factory {
function createPair(address tokenA, address tokenB) external returns (address pair);
}
interface IUniswapV2Router02 {
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}
contract SPX is Context, IERC20, Ownable {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
mapping (address => bool) private _isExcludedFromFee;
mapping (address => bool) private bots;
mapping(address => uint256) private _holderLastTransferTimestamp;
bool public transferDelayEnabled = false;
address payable private _taxWallet;
uint256 private _initialBuyTax=15;
uint256 private _initialSellTax=70;
uint256 private _finalBuyTax=0;
uint256 private _finalSellTax=0;
uint256 public _reduceBuyTaxAt=69;
uint256 public _reduceSellTaxAt=420;
uint256 private _preventSwapBefore=30;
uint256 private _buyCount=0;
uint8 private constant _decimals = 8;
uint256 private constant _tTotal = 1000000000 * 10**_decimals;
string private constant _name = unicode"SPX6900";
string private constant _symbol = unicode"SPX";
uint256 public _maxTxAmount = 20000000 * 10**_decimals;
uint256 public _maxWalletSize = 30000000 * 10**_decimals;
uint256 public _taxSwapThreshold=6000000 * 10**_decimals;
uint256 public _maxTaxSwap=6000000 * 10**_decimals;
IUniswapV2Router02 private uniswapV2Router;
address private uniswapV2Pair;
bool private tradingOpen;
bool private inSwap = false;
bool private swapEnabled = false;
event MaxTxAmountUpdated(uint _maxTxAmount);
modifier lockTheSwap {
inSwap = true;
_;
inSwap = false;
}
constructor () {
_taxWallet = payable(_msgSender());
_balances[_msgSender()] = _tTotal;
_isExcludedFromFee[owner()] = true;
_isExcludedFromFee[address(this)] = true;
_isExcludedFromFee[_taxWallet] = true;
emit Transfer(address(0), _msgSender(), _tTotal);
}
function name() public pure returns (string memory) {
return _name;
}
function symbol() public pure returns (string memory) {
return _symbol;
}
function decimals() public pure returns (uint8) {
return _decimals;
}
function totalSupply() public pure override returns (uint256) {
return _tTotal;
}
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
function transfer(address recipient, uint256 amount) public override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
function allowance(address owner, address spender) public view override returns (uint256) {
return _allowances[owner][spender];
}
function approve(address spender, uint256 amount) public override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
function _approve(address owner, address spender, uint256 amount) private {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
function _transfer(address from, address to, uint256 amount) private {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(amount > 0, "Transfer amount must be greater than zero");
uint256 taxAmount=0;
if (from != owner() && to != owner()) {
require(!bots[from] && !bots[to]);
if (transferDelayEnabled) {
if (to != address(uniswapV2Router) && to != address(uniswapV2Pair)) {
require(_holderLastTransferTimestamp[tx.origin] < block.number,"Only one transfer per block allowed.");
_holderLastTransferTimestamp[tx.origin] = block.number;
}
}
if (from == uniswapV2Pair && to != address(uniswapV2Router) && ! _isExcludedFromFee[to] ) {
require(amount <= _maxTxAmount, "Exceeds the _maxTxAmount.");
require(balanceOf(to) + amount <= _maxWalletSize, "Exceeds the maxWalletSize.");
_buyCount++;
}
taxAmount = amount.mul((_buyCount>_reduceBuyTaxAt)?_finalBuyTax:_initialBuyTax).div(100);
if(to == uniswapV2Pair && from!= address(this) ){
taxAmount = amount.mul((_buyCount>_reduceSellTaxAt)?_finalSellTax:_initialSellTax).div(100);
}
uint256 contractTokenBalance = balanceOf(address(this));
if (!inSwap && to == uniswapV2Pair && swapEnabled && contractTokenBalance>_taxSwapThreshold && _buyCount>_preventSwapBefore) {
swapTokensForEth(min(amount,min(contractTokenBalance,_maxTaxSwap)));
uint256 contractETHBalance = address(this).balance;
if(contractETHBalance > 0) {
sendETHToFee(address(this).balance);
}
}
}
if(taxAmount>0){
_balances[address(this)]=_balances[address(this)].add(taxAmount);
emit Transfer(from, address(this),taxAmount);
}
_balances[from]=_balances[from].sub(amount);
_balances[to]=_balances[to].add(amount.sub(taxAmount));
emit Transfer(from, to, amount.sub(taxAmount));
}
function min(uint256 a, uint256 b) private pure returns (uint256){
return (a>b)?b:a;
}
function swapTokensForEth(uint256 tokenAmount) private lockTheSwap {
if(tokenAmount==0){return;}
if(!tradingOpen){return;}
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = uniswapV2Router.WETH();
_approve(address(this), address(uniswapV2Router), tokenAmount);
uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens(
tokenAmount,
0,
path,
address(this),
block.timestamp
);
}
function removeLimits() external onlyOwner{
_maxTxAmount = _tTotal;
_maxWalletSize=_tTotal;
transferDelayEnabled=false;
_reduceSellTaxAt=20;
_reduceBuyTaxAt=20;
emit MaxTxAmountUpdated(_tTotal);
}
function sendETHToFee(uint256 amount) private {
_taxWallet.transfer(amount);
}
function isBot(address a) public view returns (bool){
return bots[a];
}
function runitturbo() external onlyOwner() {
require(!tradingOpen,"trading is already open");
uniswapV2Router = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
_approve(address(this), address(uniswapV2Router), _tTotal);
uniswapV2Pair = IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), uniswapV2Router.WETH());
uniswapV2Router.addLiquidityETH{value: address(this).balance}(address(this),balanceOf(address(this)),0,0,owner(),block.timestamp);
IERC20(uniswapV2Pair).approve(address(uniswapV2Router), type(uint).max);
swapEnabled = true;
tradingOpen = true;
}
receive() external payable {}
function manualSwap() external {
require(_msgSender()==_taxWallet);
uint256 tokenBalance=balanceOf(address(this));
if(tokenBalance>0){
swapTokensForEth(tokenBalance);
}
uint256 ethBalance=address(this).balance;
if(ethBalance>0){
sendETHToFee(ethBalance);
}
}
function addBots(address[] memory bots_) public onlyOwner {
for (uint i = 0; i < bots_.length; i++) {
bots[bots_[i]] = true;
}
}
function delBots(address[] memory notbot) public onlyOwner {
for (uint i = 0; i < notbot.length; i++) {
bots[notbot[i]] = false;
}
}
}File 3 of 7: LiFiDiamond
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
error TokenAddressIsZero();
error TokenNotSupported();
error CannotBridgeToSameNetwork();
error ZeroPostSwapBalance();
error NoSwapDataProvided();
error NativeValueWithERC();
error ContractCallNotAllowed();
error NullAddrIsNotAValidSpender();
error NullAddrIsNotAnERC20Token();
error NoTransferToNullAddress();
error NativeAssetTransferFailed();
error InvalidBridgeConfigLength();
error InvalidAmount();
error InvalidContract();
error InvalidConfig();
error UnsupportedChainId(uint256 chainId);
error InvalidReceiver();
error InvalidDestinationChain();
error InvalidSendingToken();
error InvalidCaller();
error AlreadyInitialized();
error NotInitialized();
error OnlyContractOwner();
error CannotAuthoriseSelf();
error RecoveryAddressCannotBeZero();
error CannotDepositNativeToken();
error InvalidCallData();
error NativeAssetNotSupported();
error UnAuthorized();
error NoSwapFromZeroBalance();
error InvalidFallbackAddress();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error InsufficientBalance(uint256 required, uint256 balance);
error ZeroAmount();
error InvalidFee();
error InformationMismatch();
error NotAContract();
error NotEnoughBalance(uint256 requested, uint256 available);
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
interface IDiamondCut {
enum FacetCutAction {
Add,
Replace,
Remove
}
// Add=0, Replace=1, Remove=2
struct FacetCut {
address facetAddress;
FacetCutAction action;
bytes4[] functionSelectors;
}
/// @notice Add/replace/remove any number of functions and optionally execute
/// a function with delegatecall
/// @param _diamondCut Contains the facet addresses and function selectors
/// @param _init The address of the contract or facet to execute _calldata
/// @param _calldata A function call, including function selector and arguments
/// _calldata is executed with delegatecall on _init
function diamondCut(
FacetCut[] calldata _diamondCut,
address _init,
bytes calldata _calldata
) external;
event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { LibDiamond } from "./Libraries/LibDiamond.sol";
import { IDiamondCut } from "./Interfaces/IDiamondCut.sol";
import { LibUtil } from "./Libraries/LibUtil.sol";
contract LiFiDiamond {
constructor(address _contractOwner, address _diamondCutFacet) payable {
LibDiamond.setContractOwner(_contractOwner);
// Add the diamondCut external function from the diamondCutFacet
IDiamondCut.FacetCut[] memory cut = new IDiamondCut.FacetCut[](1);
bytes4[] memory functionSelectors = new bytes4[](1);
functionSelectors[0] = IDiamondCut.diamondCut.selector;
cut[0] = IDiamondCut.FacetCut({
facetAddress: _diamondCutFacet,
action: IDiamondCut.FacetCutAction.Add,
functionSelectors: functionSelectors
});
LibDiamond.diamondCut(cut, address(0), "");
}
// Find facet for function that is called and execute the
// function if a facet is found and return any value.
// solhint-disable-next-line no-complex-fallback
fallback() external payable {
LibDiamond.DiamondStorage storage ds;
bytes32 position = LibDiamond.DIAMOND_STORAGE_POSITION;
// get diamond storage
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
// get facet from function selector
address facet = ds.selectorToFacetAndPosition[msg.sig].facetAddress;
if (facet == address(0)) {
revert LibDiamond.FunctionDoesNotExist();
}
// Execute external function from facet using delegatecall and return any value.
// solhint-disable-next-line no-inline-assembly
assembly {
// copy function selector and any arguments
calldatacopy(0, 0, calldatasize())
// execute function call using the facet
let result := delegatecall(gas(), facet, 0, calldatasize(), 0, 0)
// get any return value
returndatacopy(0, 0, returndatasize())
// return any return value or error back to the caller
switch result
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
// Able to receive ether
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
error UintOutOfBounds();
// -------------------------
function concat(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bytes memory) {
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(
0x40,
and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
)
)
}
return tempBytes;
}
function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
assembly {
// Read the first 32 bytes of _preBytes storage, which is the length
// of the array. (We don't need to use the offset into the slot
// because arrays use the entire slot.)
let fslot := sload(_preBytes.slot)
// Arrays of 31 bytes or less have an even value in their slot,
// while longer arrays have an odd value. The actual length is
// the slot divided by two for odd values, and the lowest order
// byte divided by two for even values.
// If the slot is even, bitwise and the slot with 255 and divide by
// two to get the length. If the slot is odd, bitwise and the slot
// with -1 and divide by two.
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
let newlength := add(slength, mlength)
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
switch add(lt(slength, 32), lt(newlength, 32))
case 2 {
// Since the new array still fits in the slot, we just need to
// update the contents of the slot.
// uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
sstore(
_preBytes.slot,
// all the modifications to the slot are inside this
// next block
add(
// we can just add to the slot contents because the
// bytes we want to change are the LSBs
fslot,
add(
mul(
div(
// load the bytes from memory
mload(add(_postBytes, 0x20)),
// zero all bytes to the right
exp(0x100, sub(32, mlength))
),
// and now shift left the number of bytes to
// leave space for the length in the slot
exp(0x100, sub(32, newlength))
),
// increase length by the double of the memory
// bytes length
mul(mlength, 2)
)
)
)
}
case 1 {
// The stored value fits in the slot, but the combined value
// will exceed it.
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// The contents of the _postBytes array start 32 bytes into
// the structure. Our first read should obtain the `submod`
// bytes that can fit into the unused space in the last word
// of the stored array. To get this, we read 32 bytes starting
// from `submod`, so the data we read overlaps with the array
// contents by `submod` bytes. Masking the lowest-order
// `submod` bytes allows us to add that value directly to the
// stored value.
let submod := sub(32, slength)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(
sc,
add(
and(fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00),
and(mload(mc), mask)
)
)
for {
mc := add(mc, 0x20)
sc := add(sc, 1)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
default {
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
// Start copying to the last used word of the stored array.
let sc := add(keccak256(0x0, 0x20), div(slength, 32))
// save new length
sstore(_preBytes.slot, add(mul(newlength, 2), 1))
// Copy over the first `submod` bytes of the new data as in
// case 1 above.
let slengthmod := mod(slength, 32)
let submod := sub(32, slengthmod)
let mc := add(_postBytes, submod)
let end := add(_postBytes, mlength)
let mask := sub(exp(0x100, submod), 1)
sstore(sc, add(sload(sc), and(mload(mc), mask)))
for {
sc := add(sc, 1)
mc := add(mc, 0x20)
} lt(mc, end) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
sstore(sc, mload(mc))
}
mask := exp(0x100, sub(mc, end))
sstore(sc, mul(div(mload(mc), mask), mask))
}
}
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
if (_bytes.length < _start + 1) {
revert UintOutOfBounds();
}
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
if (_bytes.length < _start + 2) {
revert UintOutOfBounds();
}
uint16 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x2), _start))
}
return tempUint;
}
function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
if (_bytes.length < _start + 4) {
revert UintOutOfBounds();
}
uint32 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x4), _start))
}
return tempUint;
}
function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
if (_bytes.length < _start + 8) {
revert UintOutOfBounds();
}
uint64 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x8), _start))
}
return tempUint;
}
function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
if (_bytes.length < _start + 12) {
revert UintOutOfBounds();
}
uint96 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0xc), _start))
}
return tempUint;
}
function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
if (_bytes.length < _start + 16) {
revert UintOutOfBounds();
}
uint128 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x10), _start))
}
return tempUint;
}
function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
uint256 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x20), _start))
}
return tempUint;
}
function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
if (_bytes.length < _start + 32) {
revert UintOutOfBounds();
}
bytes32 tempBytes32;
assembly {
tempBytes32 := mload(add(add(_bytes, 0x20), _start))
}
return tempBytes32;
}
function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
bool success = true;
assembly {
let length := mload(_preBytes)
// if lengths don't match the arrays are not equal
switch eq(length, mload(_postBytes))
case 1 {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
let mc := add(_preBytes, 0x20)
let end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
} eq(add(lt(mc, end), cb), 2) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// if any of these checks fails then arrays are not equal
if iszero(eq(mload(mc), mload(cc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
function equalStorage(bytes storage _preBytes, bytes memory _postBytes) internal view returns (bool) {
bool success = true;
assembly {
// we know _preBytes_offset is 0
let fslot := sload(_preBytes.slot)
// Decode the length of the stored array like in concatStorage().
let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
let mlength := mload(_postBytes)
// if lengths don't match the arrays are not equal
switch eq(slength, mlength)
case 1 {
// slength can contain both the length and contents of the array
// if length < 32 bytes so let's prepare for that
// v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
if iszero(iszero(slength)) {
switch lt(slength, 32)
case 1 {
// blank the last byte which is the length
fslot := mul(div(fslot, 0x100), 0x100)
if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
// unsuccess:
success := 0
}
}
default {
// cb is a circuit breaker in the for loop since there's
// no said feature for inline assembly loops
// cb = 1 - don't breaker
// cb = 0 - break
let cb := 1
// get the keccak hash to get the contents of the array
mstore(0x0, _preBytes.slot)
let sc := keccak256(0x0, 0x20)
let mc := add(_postBytes, 0x20)
let end := add(mc, mlength)
// the next line is the loop condition:
// while(uint256(mc < end) + cb == 2)
// solhint-disable-next-line no-empty-blocks
for {
} eq(add(lt(mc, end), cb), 2) {
sc := add(sc, 1)
mc := add(mc, 0x20)
} {
if iszero(eq(sload(sc), mload(mc))) {
// unsuccess:
success := 0
cb := 0
}
}
}
}
}
default {
// unsuccess:
success := 0
}
}
return success;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import { IDiamondCut } from "../Interfaces/IDiamondCut.sol";
import { LibUtil } from "../Libraries/LibUtil.sol";
import { OnlyContractOwner } from "../Errors/GenericErrors.sol";
/// Implementation of EIP-2535 Diamond Standard
/// https://eips.ethereum.org/EIPS/eip-2535
library LibDiamond {
bytes32 internal constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage");
// Diamond specific errors
error IncorrectFacetCutAction();
error NoSelectorsInFace();
error FunctionAlreadyExists();
error FacetAddressIsZero();
error FacetAddressIsNotZero();
error FacetContainsNoCode();
error FunctionDoesNotExist();
error FunctionIsImmutable();
error InitZeroButCalldataNotEmpty();
error CalldataEmptyButInitNotZero();
error InitReverted();
// ----------------
struct FacetAddressAndPosition {
address facetAddress;
uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array
}
struct FacetFunctionSelectors {
bytes4[] functionSelectors;
uint256 facetAddressPosition; // position of facetAddress in facetAddresses array
}
struct DiamondStorage {
// maps function selector to the facet address and
// the position of the selector in the facetFunctionSelectors.selectors array
mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition;
// maps facet addresses to function selectors
mapping(address => FacetFunctionSelectors) facetFunctionSelectors;
// facet addresses
address[] facetAddresses;
// Used to query if a contract implements an interface.
// Used to implement ERC-165.
mapping(bytes4 => bool) supportedInterfaces;
// owner of the contract
address contractOwner;
}
function diamondStorage() internal pure returns (DiamondStorage storage ds) {
bytes32 position = DIAMOND_STORAGE_POSITION;
// solhint-disable-next-line no-inline-assembly
assembly {
ds.slot := position
}
}
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
function setContractOwner(address _newOwner) internal {
DiamondStorage storage ds = diamondStorage();
address previousOwner = ds.contractOwner;
ds.contractOwner = _newOwner;
emit OwnershipTransferred(previousOwner, _newOwner);
}
function contractOwner() internal view returns (address contractOwner_) {
contractOwner_ = diamondStorage().contractOwner;
}
function enforceIsContractOwner() internal view {
if (msg.sender != diamondStorage().contractOwner) revert OnlyContractOwner();
}
event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata);
// Internal function version of diamondCut
function diamondCut(
IDiamondCut.FacetCut[] memory _diamondCut,
address _init,
bytes memory _calldata
) internal {
for (uint256 facetIndex; facetIndex < _diamondCut.length; ) {
IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action;
if (action == IDiamondCut.FacetCutAction.Add) {
addFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Replace) {
replaceFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else if (action == IDiamondCut.FacetCutAction.Remove) {
removeFunctions(_diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors);
} else {
revert IncorrectFacetCutAction();
}
unchecked {
++facetIndex;
}
}
emit DiamondCut(_diamondCut, _init, _calldata);
initializeDiamondCut(_init, _calldata);
}
function addFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (!LibUtil.isZeroAddress(oldFacetAddress)) {
revert FunctionAlreadyExists();
}
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function replaceFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsZero();
}
uint96 selectorPosition = uint96(ds.facetFunctionSelectors[_facetAddress].functionSelectors.length);
// add new facet address if it does not exist
if (selectorPosition == 0) {
addFacet(ds, _facetAddress);
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
if (oldFacetAddress == _facetAddress) {
revert FunctionAlreadyExists();
}
removeFunction(ds, oldFacetAddress, selector);
addFunction(ds, selector, selectorPosition, _facetAddress);
unchecked {
++selectorPosition;
++selectorIndex;
}
}
}
function removeFunctions(address _facetAddress, bytes4[] memory _functionSelectors) internal {
if (_functionSelectors.length == 0) {
revert NoSelectorsInFace();
}
DiamondStorage storage ds = diamondStorage();
// if function does not exist then do nothing and return
if (!LibUtil.isZeroAddress(_facetAddress)) {
revert FacetAddressIsNotZero();
}
for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; ) {
bytes4 selector = _functionSelectors[selectorIndex];
address oldFacetAddress = ds.selectorToFacetAndPosition[selector].facetAddress;
removeFunction(ds, oldFacetAddress, selector);
unchecked {
++selectorIndex;
}
}
}
function addFacet(DiamondStorage storage ds, address _facetAddress) internal {
enforceHasContractCode(_facetAddress);
ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds.facetAddresses.length;
ds.facetAddresses.push(_facetAddress);
}
function addFunction(
DiamondStorage storage ds,
bytes4 _selector,
uint96 _selectorPosition,
address _facetAddress
) internal {
ds.selectorToFacetAndPosition[_selector].functionSelectorPosition = _selectorPosition;
ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector);
ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress;
}
function removeFunction(
DiamondStorage storage ds,
address _facetAddress,
bytes4 _selector
) internal {
if (LibUtil.isZeroAddress(_facetAddress)) {
revert FunctionDoesNotExist();
}
// an immutable function is a function defined directly in a diamond
if (_facetAddress == address(this)) {
revert FunctionIsImmutable();
}
// replace selector with last selector, then delete last selector
uint256 selectorPosition = ds.selectorToFacetAndPosition[_selector].functionSelectorPosition;
uint256 lastSelectorPosition = ds.facetFunctionSelectors[_facetAddress].functionSelectors.length - 1;
// if not the same then replace _selector with lastSelector
if (selectorPosition != lastSelectorPosition) {
bytes4 lastSelector = ds.facetFunctionSelectors[_facetAddress].functionSelectors[lastSelectorPosition];
ds.facetFunctionSelectors[_facetAddress].functionSelectors[selectorPosition] = lastSelector;
ds.selectorToFacetAndPosition[lastSelector].functionSelectorPosition = uint96(selectorPosition);
}
// delete the last selector
ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop();
delete ds.selectorToFacetAndPosition[_selector];
// if no more selectors for facet address then delete the facet address
if (lastSelectorPosition == 0) {
// replace facet address with last facet address and delete last facet address
uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1;
uint256 facetAddressPosition = ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
if (facetAddressPosition != lastFacetAddressPosition) {
address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition];
ds.facetAddresses[facetAddressPosition] = lastFacetAddress;
ds.facetFunctionSelectors[lastFacetAddress].facetAddressPosition = facetAddressPosition;
}
ds.facetAddresses.pop();
delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition;
}
}
function initializeDiamondCut(address _init, bytes memory _calldata) internal {
if (LibUtil.isZeroAddress(_init)) {
if (_calldata.length != 0) {
revert InitZeroButCalldataNotEmpty();
}
} else {
if (_calldata.length == 0) {
revert CalldataEmptyButInitNotZero();
}
if (_init != address(this)) {
enforceHasContractCode(_init);
}
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory error) = _init.delegatecall(_calldata);
if (!success) {
if (error.length > 0) {
// bubble up the error
revert(string(error));
} else {
revert InitReverted();
}
}
}
}
function enforceHasContractCode(address _contract) internal view {
uint256 contractSize;
// solhint-disable-next-line no-inline-assembly
assembly {
contractSize := extcodesize(_contract)
}
if (contractSize == 0) {
revert FacetContainsNoCode();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
import "./LibBytes.sol";
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(bytes memory _res) internal pure returns (string memory) {
// If the _res length is less than 68, then the transaction failed silently (without a revert message)
if (_res.length < 68) return "Transaction reverted silently";
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
}
File 4 of 7: MagpieRouterV3_1
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {Ownable2Step} from "openzeppelin-solidity/contracts/access/Ownable2Step.sol";
import {Pausable} from "openzeppelin-solidity/contracts/security/Pausable.sol";
import {Address} from "openzeppelin-solidity/contracts/utils/Address.sol";
import {IMagpieRouterV3_1} from "./interfaces/IMagpieRouterV3_1.sol";
import {LibAsset} from "./libraries/LibAsset.sol";
import {LibRouter, SwapData} from "./libraries/LibRouter.sol";
error InvalidCall();
error InvalidCaller();
error InvalidAmountIn();
error InvalidNativeAmount();
contract MagpieRouterV3_1 is IMagpieRouterV3_1, Ownable2Step, Pausable {
using LibAsset for address;
mapping(address => bool) public internalCaller;
address public coreAddress;
address public swapFeeAddress;
/// @dev Restricts swap functions with signatures to only be called by whitelisted internal caller.
modifier onlyInternalCaller() {
if (!internalCaller[msg.sender]) {
revert InvalidCaller();
}
_;
}
/// @dev See {IMagpieRouterV3-updateRouterAddress}
function updateCoreAddress(address value) external onlyOwner {
coreAddress = value;
}
/// @dev See {IMagpieRouterV3-updateSwapFeeAddress}
function updateSwapFeeAddress(address value) external onlyOwner {
swapFeeAddress = value;
}
/// @dev See {IMagpieRouterV3-updateInternalCaller}
function updateInternalCaller(address caller, bool value) external onlyOwner {
internalCaller[caller] = value;
emit UpdateInternalCaller(msg.sender, caller, value);
}
/// @dev See {IMagpieRouterV3-pause}
function pause() public onlyOwner whenNotPaused {
_pause();
}
/// @dev See {IMagpieRouterV3-unpause}
function unpause() public onlyOwner whenPaused {
_unpause();
}
/// @dev See {IMagpieRouterV3-multicall}
function multicall(bytes[] calldata data) external onlyOwner returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
return results;
}
/// @dev Verifies the signature for a swap operation.
/// @param swapData The data structure containing information about the swap.
/// @param useCaller Boolean indicating whether to use the caller's address.
/// @return fromAddress The address to be used for the swap operation.
function verifySignature(SwapData memory swapData, bool useCaller) private view returns (address fromAddress) {
bool hasAffiliate = swapData.hasAffiliate;
uint256 messagePtr;
uint256 messageLength = hasAffiliate ? 384 : 320;
assembly {
messagePtr := mload(0x40)
mstore(0x40, add(messagePtr, messageLength))
switch hasAffiliate
case 1 {
// keccak256("Swap(address router,address sender,address recipient,address fromAsset,address toAsset,uint256 deadline,uint256 amountOutMin,uint256 swapFee,uint256 amountIn,address affiliate,uint256 affiliateFee)")
mstore(messagePtr, 0x64d67eff2ff010acba1b1df82fb327ba0dc6d2965ba6b0b472bc14c494c8b4f6)
}
default {
// keccak256("Swap(address router,address sender,address recipient,address fromAsset,address toAsset,uint256 deadline,uint256 amountOutMin,uint256 swapFee,uint256 amountIn)")
mstore(messagePtr, 0x783528850c43ab6adcc3a843186a6558aa806707dd0abb3d2909a2a70b7f22a3)
}
}
fromAddress = LibRouter.verifySignature(
// keccak256(bytes("Magpie Router")),
0x86af987965544521ef5b52deabbeb812d3353977e11a2dbe7e0f4905d1e60721,
// keccak256(bytes("3")),
0x2a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4de,
swapData,
messagePtr,
messageLength,
useCaller,
2
);
}
/// @dev Swaps tokens based on the provided swap data.
/// @param swapData The data structure containing information about the swap operation.
/// @param fromAddress The address initiating the swap. This address is responsible for the input assets.
/// @return amountOut The amount of tokens or assets received after the swap.
/// @return gasUsed The amount of gas consumed by the recorded operation.
function swap(
SwapData memory swapData,
address fromAddress,
uint256 fullAmountIn
) private returns (uint256 amountOut, uint256 gasUsed) {
if (swapData.fromAssetAddress.isNative()) {
if (msg.value < (swapData.amountIn + swapData.swapFee + swapData.affiliateFee)) {
revert InvalidAmountIn();
}
}
uint256 nativeAmount = 0;
if (swapData.fromAssetAddress.isNative()) {
nativeAmount = swapData.amountIn;
} else {
swapData.fromAssetAddress.transferFrom(fromAddress, address(this), swapData.amountIn);
swapData.fromAssetAddress.approve(coreAddress, swapData.amountIn);
}
address currentCoreAddress = coreAddress;
assembly {
let success := 0
let inputPtr := mload(0x40)
let inputLength := add(calldataload(36), 68)
let payloadLength := sub(inputLength, 68)
mstore(0x40, add(inputPtr, inputLength))
mstore(inputPtr, 0x158f689400000000000000000000000000000000000000000000000000000000) // swapWithoutSignature
mstore(add(inputPtr, 4), 32)
mstore(add(inputPtr, 36), payloadLength)
let outputPtr := mload(0x40)
mstore(0x40, add(outputPtr, 64))
calldatacopy(add(inputPtr, 68), 68, payloadLength)
success := call(gas(), currentCoreAddress, nativeAmount, inputPtr, inputLength, outputPtr, 64)
if eq(success, 1) {
amountOut := mload(outputPtr)
gasUsed := mload(add(outputPtr, 32))
}
if eq(success, 0) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
emit Swap(
fromAddress,
swapData.toAddress,
swapData.fromAssetAddress,
swapData.toAssetAddress,
fullAmountIn,
amountOut
);
}
/// @dev See {IMagpieRouterV3-estimateSwapGas}
function estimateSwapGas(
bytes calldata
) external payable whenNotPaused returns (uint256 amountOut, uint256 gasUsed) {
SwapData memory swapData = LibRouter.getData();
address fromAddress = verifySignature(swapData, true);
if (swapData.hasPermit) {
LibRouter.permit(swapData, fromAddress);
}
LibRouter.transferFees(swapData, fromAddress, swapData.swapFee == 0 ? address(0) : swapFeeAddress);
(amountOut, gasUsed) = swap(
swapData,
fromAddress,
swapData.amountIn + swapData.swapFee + swapData.affiliateFee
);
}
/// @dev See {IMagpieRouterV3-swapWithMagpieSignature}
function swapWithMagpieSignature(bytes calldata) external payable whenNotPaused returns (uint256 amountOut) {
SwapData memory swapData = LibRouter.getData();
address fromAddress = verifySignature(swapData, true);
if (swapData.hasPermit) {
LibRouter.permit(swapData, fromAddress);
}
LibRouter.transferFees(swapData, fromAddress, swapData.swapFee == 0 ? address(0) : swapFeeAddress);
(amountOut, ) = swap(swapData, fromAddress, swapData.amountIn + swapData.swapFee + swapData.affiliateFee);
}
/// @dev See {IMagpieRouterV3-swapWithUserSignature}
function swapWithUserSignature(bytes calldata) external payable onlyInternalCaller returns (uint256 amountOut) {
SwapData memory swapData = LibRouter.getData();
if (msg.value > 0) {
revert InvalidNativeAmount();
}
address fromAddress = verifySignature(swapData, false);
if (swapData.hasPermit) {
LibRouter.permit(swapData, fromAddress);
}
LibRouter.transferFees(swapData, fromAddress, swapData.swapFee == 0 ? address(0) : swapFeeAddress);
(amountOut, ) = swap(swapData, fromAddress, swapData.amountIn + swapData.swapFee + swapData.affiliateFee);
}
/// @dev Used to receive ethers
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
interface IMagpieRouterV3_1 {
event UpdateInternalCaller(address indexed sender, address caller, bool value);
/// @dev Allows the owner to update the whitelisted internal callers.
/// @param caller Caller address.
/// @param value Disable or enable the related caller.
function updateInternalCaller(address caller, bool value) external;
/// @dev Allows the owner to update the swap fee receiver.
/// @param value Swap fee receiver address.
function updateSwapFeeAddress(address value) external;
/// @dev Allows the owner to update the magpire router core address.
/// @param value Magpie core address.
function updateCoreAddress(address value) external;
/// @dev Called by the owner to pause, triggers stopped state.
function pause() external;
/// @dev Called by the owner to unpause, returns to normal state.
function unpause() external;
event Swap(
address indexed fromAddress,
address indexed toAddress,
address fromAssetAddress,
address toAssetAddress,
uint256 amountIn,
uint256 amountOut
);
/// @dev Makes it possible to execute multiple functions in the same transaction.
function multicall(bytes[] calldata data) external returns (bytes[] memory results);
/// @dev Provides an external interface to estimate the gas cost of the last hop in a route.
/// @return amountOut The amount received after swapping.
/// @return gasUsed The cost of gas while performing the swap.
function estimateSwapGas(bytes calldata swapArgs) external payable returns (uint256 amountOut, uint256 gasUsed);
/// @dev Performs token swap with magpie signature.
/// @return amountOut The amount received after swapping.
function swapWithMagpieSignature(bytes calldata swapArgs) external payable returns (uint256 amountOut);
/// @dev Performs token swap with a user signature.
/// @return amountOut The amount received after swapping.
function swapWithUserSignature(bytes calldata swapArgs) external payable returns (uint256 amountOut);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import "../interfaces/IWETH.sol";
error AssetNotReceived();
error ApprovalFailed();
error TransferFromFailed();
error TransferFailed();
error FailedWrap();
error FailedUnwrap();
library LibAsset {
using LibAsset for address;
address constant NATIVE_ASSETID = address(0);
/// @dev Checks if the given address (self) represents a native asset (Ether).
/// @param self The asset that will be checked for a native token.
/// @return Flag to identify if the asset is native or not.
function isNative(address self) internal pure returns (bool) {
return self == NATIVE_ASSETID;
}
/// @dev Wraps the specified asset.
/// @param self The asset that will be wrapped.
function wrap(address self, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 4))
mstore(ptr, 0xd0e30db000000000000000000000000000000000000000000000000000000000)
}
if (!execute(self, amount, ptr, 4, 0, 0)) {
revert FailedWrap();
}
}
/// @dev Unwraps the specified asset.
/// @param self The asset that will be unwrapped.
function unwrap(address self, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 36))
mstore(ptr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), amount)
}
if (!execute(self, 0, ptr, 36, 0, 0)) {
revert FailedUnwrap();
}
}
/// @dev Retrieves the balance of the current contract for a given asset (self).
/// @param self Asset whose balance needs to be found.
/// @return Balance of the specific asset.
function getBalance(address self) internal view returns (uint256) {
return getBalanceOf(self, address(this));
}
/// @dev Retrieves the balance of the target address for a given asset (self).
/// @param self Asset whose balance needs to be found.
/// @param targetAddress The address where the balance is checked from.
/// @return amount Balance of the specific asset.
function getBalanceOf(address self, address targetAddress) internal view returns (uint256 amount) {
assembly {
switch self
case 0 {
amount := balance(targetAddress)
}
default {
let currentInputPtr := mload(0x40)
mstore(0x40, add(currentInputPtr, 68))
mstore(currentInputPtr, 0x70a0823100000000000000000000000000000000000000000000000000000000)
mstore(add(currentInputPtr, 4), targetAddress)
let currentOutputPtr := add(currentInputPtr, 36)
if iszero(staticcall(gas(), self, currentInputPtr, 36, currentOutputPtr, 32)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
amount := mload(currentOutputPtr)
}
}
}
/// @dev Performs a safe transferFrom operation for a given asset (self) from one address (from) to another address (to).
/// @param self Asset that will be transferred.
/// @param from Address that will send the asset.
/// @param to Address that will receive the asset.
/// @param amount Transferred amount.
function transferFrom(address self, address from, address to, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 100))
mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), from)
mstore(add(ptr, 36), to)
mstore(add(ptr, 68), amount)
}
if (!execute(self, 0, ptr, 100, 0, 0)) {
revert TransferFromFailed();
}
}
/// @dev Transfers a given amount of an asset (self) to a recipient address (recipient).
/// @param self Asset that will be transferred.
/// @param recipient Address that will receive the transferred asset.
/// @param amount Transferred amount.
function transfer(address self, address recipient, uint256 amount) internal {
if (self.isNative()) {
(bool success, ) = payable(recipient).call{value: amount}("");
if (!success) {
revert TransferFailed();
}
} else {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 68))
mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), recipient)
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert TransferFailed();
}
}
}
/// @dev Approves a spender address (spender) to spend a specified amount of an asset (self).
/// @param self The asset that will be approved.
/// @param spender Address of a contract that will spend the owners asset.
/// @param amount Asset amount that can be spent.
function approve(address self, address spender, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 68))
mstore(ptr, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), spender)
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
assembly {
mstore(add(ptr, 36), 0)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert ApprovalFailed();
}
assembly {
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert ApprovalFailed();
}
}
}
function permit(
address self,
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 228))
mstore(ptr, 0xd505accf00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), owner)
mstore(add(ptr, 36), spender)
mstore(add(ptr, 68), amount)
mstore(add(ptr, 100), deadline)
mstore(add(ptr, 132), v)
mstore(add(ptr, 164), r)
mstore(add(ptr, 196), s)
let success := call(gas(), self, 0, ptr, 228, 0, 0)
}
}
/// @dev Determines if a call was successful.
/// @param target Address of the target contract.
/// @param success To check if the call to the contract was successful or not.
/// @param data The data was sent while calling the target contract.
/// @return result The success of the call.
function isSuccessful(address target, bool success, bytes memory data) private view returns (bool result) {
if (success) {
if (data.length == 0) {
// isContract
if (target.code.length > 0) {
result = true;
}
} else {
assembly {
result := mload(add(data, 32))
}
}
}
}
/// @dev Executes a low level call.
function execute(
address self,
uint256 currentNativeAmount,
uint256 currentInputPtr,
uint256 currentInputLength,
uint256 currentOutputPtr,
uint256 outputLength
) internal returns (bool result) {
assembly {
function isSuccessfulCall(targetAddress) -> isSuccessful {
switch iszero(returndatasize())
case 1 {
if gt(extcodesize(targetAddress), 0) {
isSuccessful := 1
}
}
case 0 {
returndatacopy(0, 0, 32)
isSuccessful := gt(mload(0), 0)
}
}
if iszero(
call(
gas(),
self,
currentNativeAmount,
currentInputPtr,
currentInputLength,
currentOutputPtr,
outputLength
)
) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
result := isSuccessfulCall(self)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {LibAsset} from "../libraries/LibAsset.sol";
struct SwapData {
address toAddress;
address fromAssetAddress;
address toAssetAddress;
uint256 deadline;
uint256 amountOutMin;
uint256 swapFee;
uint256 amountIn;
bool hasPermit;
bool hasAffiliate;
address affiliateAddress;
uint256 affiliateFee;
}
error InvalidSignature();
error ExpiredTransaction();
library LibRouter {
using LibAsset for address;
/// @dev Prepares SwapData from calldata
function getData() internal view returns (SwapData memory swapData) {
// dataOffset: 68 + 2
assembly {
let deadline := shr(
shr(248, calldataload(132)), // dataOffset + 62
calldataload(shr(240, calldataload(133))) // dataOffset + 62 + 1
)
if lt(deadline, timestamp()) {
// ExpiredTransaction
mstore(0, 0x931997cf00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
mstore(swapData, shr(96, calldataload(72))) // toAddress / dataOffset + 2
mstore(add(swapData, 32), shr(96, calldataload(92))) // fromAssetAddress / dataOffset + 22
mstore(add(swapData, 64), shr(96, calldataload(112))) // toAssetAddress / dataOffset + 42
mstore(add(swapData, 96), deadline)
mstore(
add(swapData, 128),
shr(
shr(248, calldataload(135)), // dataOffset + 62 + 3
calldataload(shr(240, calldataload(136))) // dataOffset + 62 + 4
)
) // amountOutMin
mstore(
add(swapData, 160),
shr(
shr(248, calldataload(138)), // dataOffset + 62 + 6
calldataload(shr(240, calldataload(139))) // dataOffset + 62 + 7
)
) // swapFee
mstore(
add(swapData, 192),
shr(
shr(248, calldataload(141)), // dataOffset + 62 + 9
calldataload(shr(240, calldataload(142))) // dataOffset + 62 + 10
)
) // amountIn
// calldataload(144) // r
// calldataload(176) // s
// shr(248, calldataload(208)) // v
let hasPermit := gt(shr(248, calldataload(209)), 0) // permit v
mstore(add(swapData, 224), hasPermit) // hasPermit
// calldataload(210) // permit r
// calldataload(242) // permit s
// calldataload(274) // permit deadline
switch hasPermit
case 1 {
let hasAffiliate := shr(248, calldataload(277))
mstore(add(swapData, 256), hasAffiliate) // hasAffiliate
if eq(hasAffiliate, 1) {
mstore(add(swapData, 288), shr(96, calldataload(278))) // affiliateAddress
mstore(
add(swapData, 320),
shr(shr(248, calldataload(298)), calldataload(shr(240, calldataload(299))))
) // affiliateFee
}
}
default {
let hasAffiliate := shr(248, calldataload(210))
mstore(add(swapData, 256), hasAffiliate) // hasAffiliate
if eq(hasAffiliate, 1) {
mstore(add(swapData, 288), shr(96, calldataload(211))) // affiliateAddress
mstore(
add(swapData, 320),
shr(shr(248, calldataload(231)), calldataload(shr(240, calldataload(232))))
) // affiliateFee
}
}
}
}
/// @dev Transfers the required fees for the swap operation from the user's account.
/// @param swapData The data structure containing the details of the swap operation, including fee information.
/// @param fromAddress The address of the user from whom the fees will be deducted.
/// @param swapFeeAddress The address of the swap fee receiver.
function transferFees(SwapData memory swapData, address fromAddress, address swapFeeAddress) internal {
if (swapData.swapFee > 0) {
if (swapData.fromAssetAddress.isNative()) {
swapData.fromAssetAddress.transfer(swapFeeAddress, swapData.swapFee);
} else {
swapData.fromAssetAddress.transferFrom(fromAddress, swapFeeAddress, swapData.swapFee);
}
}
if (swapData.affiliateFee > 0) {
if (swapData.fromAssetAddress.isNative()) {
swapData.fromAssetAddress.transfer(swapData.affiliateAddress, swapData.affiliateFee);
} else {
swapData.fromAssetAddress.transferFrom(fromAddress, swapData.affiliateAddress, swapData.affiliateFee);
}
}
}
/// @dev Grants permission for the user's asset to be used in a swap operation.
/// @param swapData The data structure containing the details of the swap operation.
/// @param fromAddress The address of the user who is granting permission for their asset to be used.
function permit(SwapData memory swapData, address fromAddress) internal {
uint8 v;
bytes32 r;
bytes32 s;
uint256 deadline;
assembly {
v := shr(248, calldataload(209))
r := calldataload(210)
s := calldataload(242)
deadline := shr(shr(248, calldataload(274)), calldataload(shr(240, calldataload(275))))
}
swapData.fromAssetAddress.permit(
fromAddress,
address(this),
swapData.amountIn + swapData.swapFee + swapData.affiliateFee,
deadline,
v,
r,
s
);
}
/// @dev Recovers the signer's address from a hashed message and signature components.
/// @param hash The hash of the message that was signed.
/// @param r The `r` component of the signature.
/// @param s The `s` component of the signature.
/// @param v The `v` component of the signature.
/// @return signer The address of the signer recovered from the signature.
function recoverSigner(bytes32 hash, bytes32 r, bytes32 s, uint8 v) private pure returns (address signer) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
revert InvalidSignature();
}
if (v != 27 && v != 28) {
revert InvalidSignature();
}
signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
revert InvalidSignature();
}
}
function getDomainSeparator(bytes32 name, bytes32 version) private view returns (bytes32) {
uint256 chainId;
assembly {
chainId := chainid()
}
return
keccak256(
abi.encode(
// keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
name,
version,
chainId,
address(this)
)
);
}
/// @dev Verifies the signature for a swap operation.
/// @param swapData The SwapData struct containing swap details.
/// @param messagePtr Pointer to the message data in memory.
/// @param messageLength Length of the message data.
/// @param useCaller Flag indicating whether to use the caller's address for verification.
/// @param internalCallersSlot Slot in the internal callers storage for verification.
/// @return fromAddress The address of the signer / or caller if the signature is valid.
function verifySignature(
bytes32 name,
bytes32 version,
SwapData memory swapData,
uint256 messagePtr,
uint256 messageLength,
bool useCaller,
uint8 internalCallersSlot
) internal view returns (address fromAddress) {
bytes32 domainSeparator = getDomainSeparator(name, version);
bytes32 digest;
bytes32 r;
bytes32 s;
uint8 v;
assembly {
mstore(add(messagePtr, 32), address())
mstore(add(messagePtr, 64), caller())
mstore(add(messagePtr, 96), mload(swapData))
mstore(add(messagePtr, 128), mload(add(swapData, 32)))
mstore(add(messagePtr, 160), mload(add(swapData, 64)))
mstore(add(messagePtr, 192), mload(add(swapData, 96)))
mstore(add(messagePtr, 224), mload(add(swapData, 128)))
mstore(add(messagePtr, 256), mload(add(swapData, 160)))
mstore(add(messagePtr, 288), mload(add(swapData, 192)))
// hasAffiliate
if eq(mload(add(swapData, 256)), 1) {
mstore(add(messagePtr, 320), mload(add(swapData, 288)))
mstore(add(messagePtr, 352), mload(add(swapData, 320)))
}
let hash := keccak256(messagePtr, messageLength)
messagePtr := mload(0x40)
mstore(0x40, add(messagePtr, 66))
mstore(messagePtr, "\\x19\\x01")
mstore(add(messagePtr, 2), domainSeparator)
mstore(add(messagePtr, 34), hash)
digest := keccak256(messagePtr, 66)
r := calldataload(144)
s := calldataload(176)
v := shr(248, calldataload(208))
}
if (useCaller) {
address internalCaller = recoverSigner(digest, r, s, v);
assembly {
fromAddress := caller()
mstore(0, internalCaller)
mstore(0x20, internalCallersSlot)
if iszero(eq(sload(keccak256(0, 0x40)), 1)) {
// InvalidSignature
mstore(0, 0x8baa579f00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
}
} else {
fromAddress = recoverSigner(digest, r, s, v);
if (fromAddress == address(this)) {
revert InvalidSignature();
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
File 5 of 7: MagpieRouterCore
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {Ownable2Step} from "openzeppelin-solidity/contracts/access/Ownable2Step.sol";
import {Pausable} from "openzeppelin-solidity/contracts/security/Pausable.sol";
import {Address} from "openzeppelin-solidity/contracts/utils/Address.sol";
import {IMagpieRouterCore} from "./interfaces/IMagpieRouterCore.sol";
import {LibAsset} from "./libraries/LibAsset.sol";
import {LibRouter, SwapData} from "./libraries/LibRouter.sol";
error ExpiredTransaction();
error InsufficientAmountOut();
error InvalidCall();
error InvalidCommand();
error InvalidTransferFromCall();
error ApprovalFailed();
error TransferFromFailed();
error TransferFailed();
error UniswapV3InvalidAmount();
error InvalidCaller();
error InvalidAmountIn();
error InvalidSignature();
error InvalidOutput();
error InvalidNativeAmount();
enum CommandAction {
Call, // Represents a generic call to a function within a contract.
Approval, // Represents an approval operation.
TransferFrom, // Indicates a transfer-from operation.
Transfer, // Represents a direct transfer operation.
Wrap, // This action is used for wrapping native tokens.
Unwrap, // This action is used for unwrapping native tokens.
Balance, // Checks the balance of an account or contract for a specific asset.
Math,
Comparison,
EstimateGasStart,
EstimateGasEnd
}
/// @notice DO NOT approve tokens to this contract. It is not safe. All the approvals should be given to MagpieRouter and not MagpieRouterCore.
contract MagpieRouterCore is IMagpieRouterCore, Ownable2Step, Pausable {
using LibAsset for address;
mapping(address => bool) public whitelist;
/// @dev Restricts swap functions with signatures to be called only by bridge.
modifier onlyWhitelisted() {
if (!whitelist[msg.sender]) {
revert InvalidCaller();
}
_;
}
/// @dev See {IMagpieRouterCore-updateBridge}
function updateWhitelist(address caller, bool value) external onlyOwner {
whitelist[caller] = value;
emit UpdateWhitelist(msg.sender, caller, value);
}
/// @dev See {IMagpieRouterCore-pause}
function pause() public onlyOwner whenNotPaused {
_pause();
}
/// @dev See {IMagpieRouterCore-unpause}
function unpause() public onlyOwner whenPaused {
_unpause();
}
/// @dev See {IMagpieRouterCore-multicall}
function multicall(bytes[] calldata data) external onlyOwner returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
return results;
}
/// @dev Handle uniswapV3SwapCallback requests from any protocol that is based on UniswapV3. We dont check for factory since this contract is not supposed to store tokens. We protect the user by handling amountOutMin check at the end of execution by comparing starting and final balance at the destination address.
fallback() external {
int256 amount0Delta;
int256 amount1Delta;
address assetIn;
uint256 callDataSize;
assembly {
amount0Delta := calldataload(4)
amount1Delta := calldataload(36)
assetIn := shr(96, calldataload(132))
callDataSize := calldatasize()
}
if (callDataSize != 164) {
revert InvalidCall();
}
if (amount0Delta <= 0 && amount1Delta <= 0) {
revert UniswapV3InvalidAmount();
}
uint256 amount = amount0Delta > 0 ? uint256(amount0Delta) : uint256(amount1Delta);
assetIn.transfer(msg.sender, amount);
}
/// @dev Swaps tokens based on the provided swap data.
/// @param swapData The data structure containing information about the swap operation.
/// @param fromAddress The address initiating the swap. This address is responsible for the input assets.
/// @return amountOut The amount of tokens or assets received after the swap.
/// @return gasUsed The amount of gas consumed by the recorded operation.
function swap(SwapData memory swapData, address fromAddress) private returns (uint256 amountOut, uint256 gasUsed) {
address fromAssetAddress = swapData.fromAssetAddress;
address toAssetAddress = swapData.toAssetAddress;
address toAddress = swapData.toAddress;
uint256 amountOutMin = swapData.amountOutMin;
uint256 amountIn = swapData.amountIn;
uint256 transferFromAmount;
amountOut = toAssetAddress.getBalanceOf(toAddress);
(transferFromAmount, gasUsed) = execute(fromAddress, fromAssetAddress);
amountOut = toAssetAddress.getBalanceOf(toAddress) - amountOut;
if (amountOut < amountOutMin) {
revert InsufficientAmountOut();
}
if (!fromAssetAddress.isNative() && amountIn != transferFromAmount) {
revert InvalidAmountIn();
}
}
/// @dev See {IMagpieRouterCore-swapWithoutSignature}
function swapWithoutSignature(
bytes calldata
) external payable onlyWhitelisted returns (uint256 amountOut, uint256 gasUsed) {
SwapData memory swapData = LibRouter.getData();
(amountOut, gasUsed) = swap(swapData, msg.sender);
}
/// @dev Prepares CommandData for command iteration.
function getCommandData()
private
pure
returns (uint16 commandsOffset, uint16 commandsOffsetEnd, uint16 outputsLength)
{
assembly {
commandsOffset := add(70, shr(240, calldataload(68))) // dataOffset + dataLength
commandsOffsetEnd := add(68, calldataload(36)) // commandsOffsetEnd / swapArgsOffset + swapArgsLength (swapArgsOffset - 32)
outputsLength := shr(240, calldataload(70)) // dataOffset + 32
}
}
/// @dev Handles the execution of a sequence of commands for the swap operation.
/// @param fromAddress The address from which the assets will be swapped.
/// @param fromAssetAddress The address of the asset to be swapped.
/// @return transferFromAmount The amount transferred from the specified address.
/// @return gasUsed The amount of gas used during the execution of the swap.
function execute(
address fromAddress,
address fromAssetAddress
) private returns (uint256 transferFromAmount, uint256 gasUsed) {
(uint16 commandsOffset, uint16 commandsOffsetEnd, uint16 outputsLength) = getCommandData();
uint256 outputPtr;
assembly {
outputPtr := mload(0x40)
mstore(0x40, add(outputPtr, outputsLength))
}
uint256 outputOffsetPtr = outputPtr;
unchecked {
for (uint256 i = commandsOffset; i < commandsOffsetEnd; ) {
(transferFromAmount, gasUsed, outputOffsetPtr) = executeCommand(
i,
fromAddress,
fromAssetAddress,
outputPtr,
outputOffsetPtr,
transferFromAmount,
gasUsed
);
i += 9;
}
}
if (outputOffsetPtr > outputPtr + outputsLength) {
revert InvalidOutput();
}
}
/// @dev Builds the input for a specific command.
/// @param i Command data position.
/// @param outputPtr Memory pointer of the currently available output.
/// @return input Calculated input data.
/// @return nativeAmount Native token amount.
function getInput(uint256 i, uint256 outputPtr) private view returns (bytes memory input, uint256 nativeAmount) {
assembly {
let sequencesPositionEnd := shr(240, calldataload(add(i, 5)))
input := mload(0x40)
nativeAmount := 0
let j := shr(240, calldataload(add(i, 3))) // sequencesPosition
let inputOffsetPtr := add(input, 32)
for {
} lt(j, sequencesPositionEnd) {
} {
let sequenceType := shr(248, calldataload(j))
switch sequenceType
// NativeAmount
case 0 {
switch shr(240, calldataload(add(j, 3)))
case 1 {
nativeAmount := mload(add(outputPtr, shr(240, calldataload(add(j, 1)))))
}
default {
let p := shr(240, calldataload(add(j, 1)))
nativeAmount := shr(shr(248, calldataload(p)), calldataload(add(p, 1)))
}
j := add(j, 5)
}
// Selector
case 1 {
mstore(inputOffsetPtr, calldataload(shr(240, calldataload(add(j, 1)))))
inputOffsetPtr := add(inputOffsetPtr, 4)
j := add(j, 3)
}
// Address
case 2 {
mstore(inputOffsetPtr, shr(96, calldataload(shr(240, calldataload(add(j, 1))))))
inputOffsetPtr := add(inputOffsetPtr, 32)
j := add(j, 3)
}
// Amount
case 3 {
let p := shr(240, calldataload(add(j, 1)))
mstore(inputOffsetPtr, shr(shr(248, calldataload(p)), calldataload(add(p, 1))))
inputOffsetPtr := add(inputOffsetPtr, 32)
j := add(j, 3)
}
// Data
case 4 {
let l := shr(240, calldataload(add(j, 3)))
calldatacopy(inputOffsetPtr, shr(240, calldataload(add(j, 1))), l)
inputOffsetPtr := add(inputOffsetPtr, l)
j := add(j, 5)
}
// CommandOutput
case 5 {
mstore(inputOffsetPtr, mload(add(outputPtr, shr(240, calldataload(add(j, 1))))))
inputOffsetPtr := add(inputOffsetPtr, 32)
j := add(j, 3)
}
// RouterAddress
case 6 {
mstore(inputOffsetPtr, address())
inputOffsetPtr := add(inputOffsetPtr, 32)
j := add(j, 1)
}
// SenderAddress
case 7 {
mstore(inputOffsetPtr, caller())
inputOffsetPtr := add(inputOffsetPtr, 32)
j := add(j, 1)
}
default {
// InvalidSequenceType
mstore(0, 0xa90b6fde00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
}
mstore(input, sub(inputOffsetPtr, add(input, 32)))
mstore(0x40, inputOffsetPtr)
}
}
/// @dev Executes a command call with the given parameters.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
/// @param outputOffsetPtr The pointer to the offset of the output in memory.
/// @return New outputOffsetPtr position.
function executeCommandCall(uint256 i, uint256 outputPtr, uint256 outputOffsetPtr) private returns (uint256) {
bytes memory input;
uint256 nativeAmount;
(input, nativeAmount) = getInput(i, outputPtr);
uint256 outputLength;
assembly {
outputLength := shr(240, calldataload(add(i, 1)))
switch shr(224, mload(add(input, 32))) // selector
case 0 {
// InvalidSelector
mstore(0, 0x7352d91c00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
case 0x23b872dd {
// Blacklist transferFrom in custom calls
// InvalidTransferFromCall
mstore(0, 0x1751a8e400000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
case 0x51905636 {
// Blacklist OFT sendFrom in custom call
mstore(0, 0x1751a8e400000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
default {
let targetAddress := shr(96, calldataload(shr(240, calldataload(add(i, 7))))) // targetPosition
if eq(targetAddress, address()) {
// InvalidCall
mstore(0, 0xae962d4e00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
if iszero(
call(
gas(),
targetAddress,
nativeAmount,
add(input, 32),
mload(input),
outputOffsetPtr,
outputLength
)
) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
}
outputOffsetPtr += outputLength;
return outputOffsetPtr;
}
/// @dev Executes a command approval with the given parameters.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
function executeCommandApproval(uint256 i, uint256 outputPtr) private {
(bytes memory input, ) = getInput(i, outputPtr);
address self;
address spender;
uint256 amount;
assembly {
self := mload(add(input, 32))
spender := mload(add(input, 64))
amount := mload(add(input, 96))
}
self.approve(spender, amount);
}
/// @dev Executes a transfer command from a specific address and asset.
/// @param i The command position.
/// @param outputPtr The pointer to the output location in memory.
/// @param fromAssetAddress The address of the asset to transfer from.
/// @param fromAddress The address to transfer the asset from.
/// @param transferFromAmount The accumulated amount of the asset to transfer.
/// @return Accumulated transfer amount.
function executeCommandTransferFrom(
uint256 i,
uint256 outputPtr,
address fromAssetAddress,
address fromAddress,
uint256 transferFromAmount
) private returns (uint256) {
(bytes memory input, ) = getInput(i, outputPtr);
uint256 amount;
assembly {
amount := mload(add(input, 64))
}
if (amount > 0) {
address to;
assembly {
to := mload(add(input, 32))
}
fromAssetAddress.transferFrom(fromAddress, to, amount);
transferFromAmount += amount;
}
return transferFromAmount;
}
/// @dev Executes a transfer command with the given parameters.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
function executeCommandTransfer(uint256 i, uint256 outputPtr) private {
(bytes memory input, ) = getInput(i, outputPtr);
uint256 amount;
assembly {
amount := mload(add(input, 96))
}
if (amount > 0) {
address self;
address recipient;
assembly {
self := mload(add(input, 32))
recipient := mload(add(input, 64))
}
self.transfer(recipient, amount);
}
}
/// @dev Executes a wrap command with the given parameters.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
function executeCommandWrap(uint256 i, uint256 outputPtr) private {
(bytes memory input, ) = getInput(i, outputPtr);
address self;
uint256 amount;
assembly {
self := mload(add(input, 32))
amount := mload(add(input, 64))
}
self.wrap(amount);
}
/// @dev Executes an unwrap command with the given parameters.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
function executeCommandUnwrap(uint256 i, uint256 outputPtr) private {
(bytes memory input, ) = getInput(i, outputPtr);
address self;
uint256 amount;
assembly {
self := mload(add(input, 32))
amount := mload(add(input, 64))
}
self.unwrap(amount);
}
/// @dev Executes a balance command and returns the resulting balance.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
/// @param outputOffsetPtr The pointer to the offset of the output in memory.
/// @return New outputOffsetPtr position.
function executeCommandBalance(
uint256 i,
uint256 outputPtr,
uint256 outputOffsetPtr
) private view returns (uint256) {
(bytes memory input, ) = getInput(i, outputPtr);
address self;
uint256 amount;
assembly {
self := mload(add(input, 32))
}
amount = self.getBalance();
assembly {
mstore(outputOffsetPtr, amount)
}
outputOffsetPtr += 32;
return outputOffsetPtr;
}
/// @dev Executes a mathematical command.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
/// @param outputOffsetPtr The pointer to the offset of the output in memory.
/// @return New outputOffsetPtr position.
function executeCommandMath(uint256 i, uint256 outputPtr, uint256 outputOffsetPtr) private view returns (uint256) {
(bytes memory input, ) = getInput(i, outputPtr);
assembly {
function math(currentInputPtr) -> amount {
let currentOutputPtr := mload(0x40)
let j := 0
let amount0 := 0
let amount1 := 0
let operator := 0
for {
} lt(j, 10) {
} {
let pos := add(currentInputPtr, mul(j, 3))
let amount0Index := shr(248, mload(add(pos, 1)))
switch lt(amount0Index, 10)
case 1 {
amount0 := mload(add(currentOutputPtr, mul(amount0Index, 32)))
}
default {
amount0Index := sub(amount0Index, 10)
amount0 := mload(add(add(currentInputPtr, 32), mul(amount0Index, 32)))
}
let amount1Index := shr(248, mload(add(pos, 2)))
switch lt(amount1Index, 10)
case 1 {
amount1 := mload(add(currentOutputPtr, mul(amount1Index, 32)))
}
default {
amount1Index := sub(amount1Index, 10)
amount1 := mload(add(add(currentInputPtr, 32), mul(amount1Index, 32)))
}
operator := shr(248, mload(pos))
switch operator
// None
case 0 {
let finalPtr := add(currentOutputPtr, mul(sub(j, 1), 32))
amount := mload(finalPtr)
mstore(0x40, add(finalPtr, 32))
leave
}
// Add
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), add(amount0, amount1))
}
// Sub
case 2 {
mstore(add(currentOutputPtr, mul(j, 32)), sub(amount0, amount1))
}
// Mul
case 3 {
mstore(add(currentOutputPtr, mul(j, 32)), mul(amount0, amount1))
}
// Div
case 4 {
mstore(add(currentOutputPtr, mul(j, 32)), div(amount0, amount1))
}
// Pow
case 5 {
mstore(add(currentOutputPtr, mul(j, 32)), exp(amount0, amount1))
}
// Abs128
case 6 {
if gt(amount0, 170141183460469231731687303715884105727) {
let mask := sar(127, amount0)
amount0 := xor(amount0, mask)
amount0 := sub(amount0, mask)
}
mstore(add(currentOutputPtr, mul(j, 32)), amount0)
}
// Abs256
case 7 {
if gt(amount0, 57896044618658097711785492504343953926634992332820282019728792003956564819967) {
let mask := sar(255, amount0)
amount0 := xor(amount0, mask)
amount0 := sub(amount0, mask)
}
mstore(add(currentOutputPtr, mul(j, 32)), amount0)
}
// Shr
case 8 {
mstore(add(currentOutputPtr, mul(j, 32)), shr(amount0, amount1))
}
// Shl
case 9 {
mstore(add(currentOutputPtr, mul(j, 32)), shl(amount0, amount1))
}
j := add(j, 1)
}
let finalPtr := add(currentOutputPtr, mul(9, 32))
amount := mload(finalPtr)
mstore(0x40, add(finalPtr, 32))
}
mstore(outputOffsetPtr, math(add(input, 32)))
}
outputOffsetPtr += 32;
return outputOffsetPtr;
}
/// @dev Executes a comparison command.
/// @param i The command data position.
/// @param outputPtr The pointer to the output location in memory.
/// @param outputOffsetPtr The pointer to the offset of the output in memory.
/// @return New outputOffsetPtr position.
function executeCommandComparison(
uint256 i,
uint256 outputPtr,
uint256 outputOffsetPtr
) private view returns (uint256) {
(bytes memory input, ) = getInput(i, outputPtr);
assembly {
function comparison(currentInputPtr) -> amount {
let currentOutputPtr := mload(0x40)
let j := 0
let amount0 := 0
let amount1 := 0
let amount2 := 0
let amount3 := 0
let operator := 0
for {
} lt(j, 6) {
} {
let pos := add(currentInputPtr, mul(j, 5))
let amount0Index := shr(248, mload(add(pos, 1)))
switch lt(amount0Index, 6)
case 1 {
amount0 := mload(add(currentOutputPtr, mul(amount0Index, 32)))
}
default {
amount0Index := sub(amount0Index, 6)
amount0 := mload(add(add(currentInputPtr, 32), mul(amount0Index, 32)))
}
let amount1Index := shr(248, mload(add(pos, 2)))
switch lt(amount1Index, 6)
case 1 {
amount1 := mload(add(currentOutputPtr, mul(amount1Index, 32)))
}
default {
amount1Index := sub(amount1Index, 6)
amount1 := mload(add(add(currentInputPtr, 32), mul(amount1Index, 32)))
}
let amount2Index := shr(248, mload(add(pos, 3)))
switch lt(amount2Index, 6)
case 1 {
amount2 := mload(add(currentOutputPtr, mul(amount2Index, 32)))
}
default {
amount2Index := sub(amount2Index, 6)
amount2 := mload(add(add(currentInputPtr, 32), mul(amount2Index, 32)))
}
let amount3Index := shr(248, mload(add(pos, 4)))
switch lt(amount3Index, 6)
case 1 {
amount3 := mload(add(currentOutputPtr, mul(amount3Index, 32)))
}
default {
amount3Index := sub(amount3Index, 6)
amount3 := mload(add(add(currentInputPtr, 32), mul(amount3Index, 32)))
}
operator := shr(248, mload(pos))
switch operator
// None
case 0 {
let finalPtr := add(currentOutputPtr, mul(sub(j, 1), 32))
amount := mload(finalPtr)
mstore(0x40, add(finalPtr, 32))
leave
}
// Lt
case 1 {
switch lt(amount0, amount1)
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
}
// Lte
case 2 {
switch or(lt(amount0, amount1), eq(amount0, amount1))
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
}
// Gt
case 3 {
switch gt(amount0, amount1)
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
}
// Gte
case 4 {
switch or(gt(amount0, amount1), eq(amount0, amount1))
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
}
// Eq
case 5 {
switch eq(amount0, amount1)
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
}
// Ne
case 6 {
switch eq(amount0, amount1)
case 1 {
mstore(add(currentOutputPtr, mul(j, 32)), amount3)
}
default {
mstore(add(currentOutputPtr, mul(j, 32)), amount2)
}
}
j := add(j, 1)
}
let finalPtr := add(currentOutputPtr, mul(5, 32))
amount := mload(finalPtr)
mstore(0x40, add(finalPtr, 32))
}
mstore(outputOffsetPtr, comparison(add(input, 32)))
}
outputOffsetPtr += 32;
return outputOffsetPtr;
}
/// @dev Handles the execution of the specified command commands for the swap operation.
/// @param i The command data position.
/// @param fromAddress The wallet / contract of the fromAssetAddress.
/// @param fromAssetAddress The asset will be transfered from the user.
/// @param outputPtr Starting position of the output memory pointer.
/// @param outputOffsetPtr Current position of the output memory pointer.
/// @param transferFromAmount Accumulated transferred amount.
/// @param gasUsed Recorded gas between commands.
function executeCommand(
uint256 i,
address fromAddress,
address fromAssetAddress,
uint256 outputPtr,
uint256 outputOffsetPtr,
uint256 transferFromAmount,
uint256 gasUsed
) private returns (uint256, uint256, uint256) {
CommandAction commandAction;
assembly {
commandAction := shr(248, calldataload(i))
}
if (commandAction == CommandAction.Call) {
outputOffsetPtr = executeCommandCall(i, outputPtr, outputOffsetPtr);
} else if (commandAction == CommandAction.Approval) {
executeCommandApproval(i, outputPtr);
} else if (commandAction == CommandAction.TransferFrom) {
transferFromAmount = executeCommandTransferFrom(
i,
outputPtr,
fromAssetAddress,
fromAddress,
transferFromAmount
);
} else if (commandAction == CommandAction.Transfer) {
executeCommandTransfer(i, outputPtr);
} else if (commandAction == CommandAction.Wrap) {
executeCommandWrap(i, outputPtr);
} else if (commandAction == CommandAction.Unwrap) {
executeCommandUnwrap(i, outputPtr);
} else if (commandAction == CommandAction.Balance) {
outputOffsetPtr = executeCommandBalance(i, outputPtr, outputOffsetPtr);
} else if (commandAction == CommandAction.Math) {
outputOffsetPtr = executeCommandMath(i, outputPtr, outputOffsetPtr);
} else if (commandAction == CommandAction.Comparison) {
outputOffsetPtr = executeCommandComparison(i, outputPtr, outputOffsetPtr);
} else if (commandAction == CommandAction.EstimateGasStart) {
gasUsed = gasleft();
} else if (commandAction == CommandAction.EstimateGasEnd) {
gasUsed -= gasleft();
} else {
revert InvalidCommand();
}
return (transferFromAmount, gasUsed, outputOffsetPtr);
}
/// @dev Used to receive ethers
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
interface IMagpieRouterCore {
event UpdateWhitelist(address indexed sender, address caller, bool value);
/// @dev Allows the owner to update the whitelisted contracts.
/// @param caller Caller address.
/// @param value Disable or enable the related caller.
function updateWhitelist(address caller, bool value) external;
/// @dev Called by the owner to pause, triggers stopped state.
function pause() external;
/// @dev Called by the owner to unpause, returns to normal state.
function unpause() external;
/// @dev Makes it possible to execute multiple functions in the same transaction.
function multicall(bytes[] calldata data) external returns (bytes[] memory results);
/// @dev Performs token swap without a signature (data will be validated in the bridge) without triggering event.
/// @return amountOut The amount received after swapping.
function swapWithoutSignature(
bytes calldata swapArgs
) external payable returns (uint256 amountOut, uint256 gasUsed);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import "../interfaces/IWETH.sol";
error AssetNotReceived();
error ApprovalFailed();
error TransferFromFailed();
error TransferFailed();
error FailedWrap();
error FailedUnwrap();
library LibAsset {
using LibAsset for address;
address constant NATIVE_ASSETID = address(0);
/// @dev Checks if the given address (self) represents a native asset (Ether).
/// @param self The asset that will be checked for a native token.
/// @return Flag to identify if the asset is native or not.
function isNative(address self) internal pure returns (bool) {
return self == NATIVE_ASSETID;
}
/// @dev Wraps the specified asset.
/// @param self The asset that will be wrapped.
function wrap(address self, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 4))
mstore(ptr, 0xd0e30db000000000000000000000000000000000000000000000000000000000)
}
if (!execute(self, amount, ptr, 4, 0, 0)) {
revert FailedWrap();
}
}
/// @dev Unwraps the specified asset.
/// @param self The asset that will be unwrapped.
function unwrap(address self, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 36))
mstore(ptr, 0x2e1a7d4d00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), amount)
}
if (!execute(self, 0, ptr, 36, 0, 0)) {
revert FailedUnwrap();
}
}
/// @dev Retrieves the balance of the current contract for a given asset (self).
/// @param self Asset whose balance needs to be found.
/// @return Balance of the specific asset.
function getBalance(address self) internal view returns (uint256) {
return getBalanceOf(self, address(this));
}
/// @dev Retrieves the balance of the target address for a given asset (self).
/// @param self Asset whose balance needs to be found.
/// @param targetAddress The address where the balance is checked from.
/// @return amount Balance of the specific asset.
function getBalanceOf(address self, address targetAddress) internal view returns (uint256 amount) {
assembly {
switch self
case 0 {
amount := balance(targetAddress)
}
default {
let currentInputPtr := mload(0x40)
mstore(0x40, add(currentInputPtr, 68))
mstore(currentInputPtr, 0x70a0823100000000000000000000000000000000000000000000000000000000)
mstore(add(currentInputPtr, 4), targetAddress)
let currentOutputPtr := add(currentInputPtr, 36)
if iszero(staticcall(gas(), self, currentInputPtr, 36, currentOutputPtr, 32)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
amount := mload(currentOutputPtr)
}
}
}
/// @dev Performs a safe transferFrom operation for a given asset (self) from one address (from) to another address (to).
/// @param self Asset that will be transferred.
/// @param from Address that will send the asset.
/// @param to Address that will receive the asset.
/// @param amount Transferred amount.
function transferFrom(address self, address from, address to, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 100))
mstore(ptr, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), from)
mstore(add(ptr, 36), to)
mstore(add(ptr, 68), amount)
}
if (!execute(self, 0, ptr, 100, 0, 0)) {
revert TransferFromFailed();
}
}
/// @dev Transfers a given amount of an asset (self) to a recipient address (recipient).
/// @param self Asset that will be transferred.
/// @param recipient Address that will receive the transferred asset.
/// @param amount Transferred amount.
function transfer(address self, address recipient, uint256 amount) internal {
if (self.isNative()) {
(bool success, ) = payable(recipient).call{value: amount}("");
if (!success) {
revert TransferFailed();
}
} else {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 68))
mstore(ptr, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), recipient)
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert TransferFailed();
}
}
}
/// @dev Approves a spender address (spender) to spend a specified amount of an asset (self).
/// @param self The asset that will be approved.
/// @param spender Address of a contract that will spend the owners asset.
/// @param amount Asset amount that can be spent.
function approve(address self, address spender, uint256 amount) internal {
uint256 ptr;
assembly {
ptr := mload(0x40)
mstore(0x40, add(ptr, 68))
mstore(ptr, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), spender)
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
assembly {
mstore(add(ptr, 36), 0)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert ApprovalFailed();
}
assembly {
mstore(add(ptr, 36), amount)
}
if (!execute(self, 0, ptr, 68, 0, 0)) {
revert ApprovalFailed();
}
}
}
function permit(
address self,
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 228))
mstore(ptr, 0xd505accf00000000000000000000000000000000000000000000000000000000)
mstore(add(ptr, 4), owner)
mstore(add(ptr, 36), spender)
mstore(add(ptr, 68), amount)
mstore(add(ptr, 100), deadline)
mstore(add(ptr, 132), v)
mstore(add(ptr, 164), r)
mstore(add(ptr, 196), s)
let success := call(gas(), self, 0, ptr, 228, 0, 0)
}
}
/// @dev Determines if a call was successful.
/// @param target Address of the target contract.
/// @param success To check if the call to the contract was successful or not.
/// @param data The data was sent while calling the target contract.
/// @return result The success of the call.
function isSuccessful(address target, bool success, bytes memory data) private view returns (bool result) {
if (success) {
if (data.length == 0) {
// isContract
if (target.code.length > 0) {
result = true;
}
} else {
assembly {
result := mload(add(data, 32))
}
}
}
}
/// @dev Executes a low level call.
function execute(
address self,
uint256 currentNativeAmount,
uint256 currentInputPtr,
uint256 currentInputLength,
uint256 currentOutputPtr,
uint256 outputLength
) internal returns (bool result) {
assembly {
function isSuccessfulCall(targetAddress) -> isSuccessful {
switch iszero(returndatasize())
case 1 {
if gt(extcodesize(targetAddress), 0) {
isSuccessful := 1
}
}
case 0 {
returndatacopy(0, 0, 32)
isSuccessful := gt(mload(0), 0)
}
}
if iszero(
call(
gas(),
self,
currentNativeAmount,
currentInputPtr,
currentInputLength,
currentOutputPtr,
outputLength
)
) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
result := isSuccessfulCall(self)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
import {LibAsset} from "../libraries/LibAsset.sol";
struct SwapData {
address toAddress;
address fromAssetAddress;
address toAssetAddress;
uint256 deadline;
uint256 amountOutMin;
uint256 swapFee;
uint256 amountIn;
bool hasPermit;
bool hasAffiliate;
address affiliateAddress;
uint256 affiliateFee;
}
error InvalidSignature();
error ExpiredTransaction();
library LibRouter {
using LibAsset for address;
/// @dev Prepares SwapData from calldata
function getData() internal view returns (SwapData memory swapData) {
// dataOffset: 68 + 2
assembly {
let deadline := shr(
shr(248, calldataload(132)), // dataOffset + 62
calldataload(shr(240, calldataload(133))) // dataOffset + 62 + 1
)
if lt(deadline, timestamp()) {
// ExpiredTransaction
mstore(0, 0x931997cf00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
mstore(swapData, shr(96, calldataload(72))) // toAddress / dataOffset + 2
mstore(add(swapData, 32), shr(96, calldataload(92))) // fromAssetAddress / dataOffset + 22
mstore(add(swapData, 64), shr(96, calldataload(112))) // toAssetAddress / dataOffset + 42
mstore(add(swapData, 96), deadline)
mstore(
add(swapData, 128),
shr(
shr(248, calldataload(135)), // dataOffset + 62 + 3
calldataload(shr(240, calldataload(136))) // dataOffset + 62 + 4
)
) // amountOutMin
mstore(
add(swapData, 160),
shr(
shr(248, calldataload(138)), // dataOffset + 62 + 6
calldataload(shr(240, calldataload(139))) // dataOffset + 62 + 7
)
) // swapFee
mstore(
add(swapData, 192),
shr(
shr(248, calldataload(141)), // dataOffset + 62 + 9
calldataload(shr(240, calldataload(142))) // dataOffset + 62 + 10
)
) // amountIn
// calldataload(144) // r
// calldataload(176) // s
// shr(248, calldataload(208)) // v
let hasPermit := gt(shr(248, calldataload(209)), 0) // permit v
mstore(add(swapData, 224), hasPermit) // hasPermit
// calldataload(210) // permit r
// calldataload(242) // permit s
// calldataload(274) // permit deadline
switch hasPermit
case 1 {
let hasAffiliate := shr(248, calldataload(277))
mstore(add(swapData, 256), hasAffiliate) // hasAffiliate
if eq(hasAffiliate, 1) {
mstore(add(swapData, 288), shr(96, calldataload(278))) // affiliateAddress
mstore(
add(swapData, 320),
shr(shr(248, calldataload(298)), calldataload(shr(240, calldataload(299))))
) // affiliateFee
}
}
default {
let hasAffiliate := shr(248, calldataload(210))
mstore(add(swapData, 256), hasAffiliate) // hasAffiliate
if eq(hasAffiliate, 1) {
mstore(add(swapData, 288), shr(96, calldataload(211))) // affiliateAddress
mstore(
add(swapData, 320),
shr(shr(248, calldataload(231)), calldataload(shr(240, calldataload(232))))
) // affiliateFee
}
}
}
}
/// @dev Transfers the required fees for the swap operation from the user's account.
/// @param swapData The data structure containing the details of the swap operation, including fee information.
/// @param fromAddress The address of the user from whom the fees will be deducted.
/// @param swapFeeAddress The address of the swap fee receiver.
function transferFees(SwapData memory swapData, address fromAddress, address swapFeeAddress) internal {
if (swapData.swapFee > 0) {
if (swapData.fromAssetAddress.isNative()) {
swapData.fromAssetAddress.transfer(swapFeeAddress, swapData.swapFee);
} else {
swapData.fromAssetAddress.transferFrom(fromAddress, swapFeeAddress, swapData.swapFee);
}
}
if (swapData.affiliateFee > 0) {
if (swapData.fromAssetAddress.isNative()) {
swapData.fromAssetAddress.transfer(swapData.affiliateAddress, swapData.affiliateFee);
} else {
swapData.fromAssetAddress.transferFrom(fromAddress, swapData.affiliateAddress, swapData.affiliateFee);
}
}
}
/// @dev Grants permission for the user's asset to be used in a swap operation.
/// @param swapData The data structure containing the details of the swap operation.
/// @param fromAddress The address of the user who is granting permission for their asset to be used.
function permit(SwapData memory swapData, address fromAddress) internal {
uint8 v;
bytes32 r;
bytes32 s;
uint256 deadline;
assembly {
v := shr(248, calldataload(209))
r := calldataload(210)
s := calldataload(242)
deadline := shr(shr(248, calldataload(274)), calldataload(shr(240, calldataload(275))))
}
swapData.fromAssetAddress.permit(
fromAddress,
address(this),
swapData.amountIn + swapData.swapFee + swapData.affiliateFee,
deadline,
v,
r,
s
);
}
/// @dev Recovers the signer's address from a hashed message and signature components.
/// @param hash The hash of the message that was signed.
/// @param r The `r` component of the signature.
/// @param s The `s` component of the signature.
/// @param v The `v` component of the signature.
/// @return signer The address of the signer recovered from the signature.
function recoverSigner(bytes32 hash, bytes32 r, bytes32 s, uint8 v) private pure returns (address signer) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
revert InvalidSignature();
}
if (v != 27 && v != 28) {
revert InvalidSignature();
}
signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
revert InvalidSignature();
}
}
function getDomainSeparator(bytes32 name, bytes32 version) private view returns (bytes32) {
uint256 chainId;
assembly {
chainId := chainid()
}
return
keccak256(
abi.encode(
// keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
name,
version,
chainId,
address(this)
)
);
}
/// @dev Verifies the signature for a swap operation.
/// @param swapData The SwapData struct containing swap details.
/// @param messagePtr Pointer to the message data in memory.
/// @param messageLength Length of the message data.
/// @param useCaller Flag indicating whether to use the caller's address for verification.
/// @param internalCallersSlot Slot in the internal callers storage for verification.
/// @return fromAddress The address of the signer / or caller if the signature is valid.
function verifySignature(
bytes32 name,
bytes32 version,
SwapData memory swapData,
uint256 messagePtr,
uint256 messageLength,
bool useCaller,
uint8 internalCallersSlot
) internal view returns (address fromAddress) {
bytes32 domainSeparator = getDomainSeparator(name, version);
bytes32 digest;
bytes32 r;
bytes32 s;
uint8 v;
assembly {
mstore(add(messagePtr, 32), address())
mstore(add(messagePtr, 64), caller())
mstore(add(messagePtr, 96), mload(swapData))
mstore(add(messagePtr, 128), mload(add(swapData, 32)))
mstore(add(messagePtr, 160), mload(add(swapData, 64)))
mstore(add(messagePtr, 192), mload(add(swapData, 96)))
mstore(add(messagePtr, 224), mload(add(swapData, 128)))
mstore(add(messagePtr, 256), mload(add(swapData, 160)))
mstore(add(messagePtr, 288), mload(add(swapData, 192)))
// hasAffiliate
if eq(mload(add(swapData, 256)), 1) {
mstore(add(messagePtr, 320), mload(add(swapData, 288)))
mstore(add(messagePtr, 352), mload(add(swapData, 320)))
}
let hash := keccak256(messagePtr, messageLength)
messagePtr := mload(0x40)
mstore(0x40, add(messagePtr, 66))
mstore(messagePtr, "\\x19\\x01")
mstore(add(messagePtr, 2), domainSeparator)
mstore(add(messagePtr, 34), hash)
digest := keccak256(messagePtr, 66)
r := calldataload(144)
s := calldataload(176)
v := shr(248, calldataload(208))
}
if (useCaller) {
address internalCaller = recoverSigner(digest, r, s, v);
assembly {
fromAddress := caller()
mstore(0, internalCaller)
mstore(0x20, internalCallersSlot)
if iszero(eq(sload(keccak256(0, 0x40)), 1)) {
// InvalidSignature
mstore(0, 0x8baa579f00000000000000000000000000000000000000000000000000000000)
revert(0, 4)
}
}
} else {
fromAddress = recoverSigner(digest, r, s, v);
if (fromAddress == address(this)) {
revert InvalidSignature();
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
File 6 of 7: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.4.18;
contract WETH9 {
string public name = "Wrapped Ether";
string public symbol = "WETH";
uint8 public decimals = 18;
event Approval(address indexed src, address indexed guy, uint wad);
event Transfer(address indexed src, address indexed dst, uint wad);
event Deposit(address indexed dst, uint wad);
event Withdrawal(address indexed src, uint wad);
mapping (address => uint) public balanceOf;
mapping (address => mapping (address => uint)) public allowance;
function() public payable {
deposit();
}
function deposit() public payable {
balanceOf[msg.sender] += msg.value;
Deposit(msg.sender, msg.value);
}
function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] -= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad);
}
function totalSupply() public view returns (uint) {
return this.balance;
}
function approve(address guy, uint wad) public returns (bool) {
allowance[msg.sender][guy] = wad;
Approval(msg.sender, guy, wad);
return true;
}
function transfer(address dst, uint wad) public returns (bool) {
return transferFrom(msg.sender, dst, wad);
}
function transferFrom(address src, address dst, uint wad)
public
returns (bool)
{
require(balanceOf[src] >= wad);
if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) {
require(allowance[src][msg.sender] >= wad);
allowance[src][msg.sender] -= wad;
}
balanceOf[src] -= wad;
balanceOf[dst] += wad;
Transfer(src, dst, wad);
return true;
}
}
/*
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
*/File 7 of 7: GenericSwapFacetV3
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 ^0.8.0 ^0.8.17 ^0.8.4;
// lib/solmate/src/tokens/ERC20.sol
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// src/Errors/GenericErrors.sol
/// @custom:version 1.0.1
error AlreadyInitialized();
error CannotAuthoriseSelf();
error CannotBridgeToSameNetwork();
error ContractCallNotAllowed();
error CumulativeSlippageTooHigh(uint256 minAmount, uint256 receivedAmount);
error DiamondIsPaused();
error ETHTransferFailed();
error ExternalCallFailed();
error FunctionDoesNotExist();
error InformationMismatch();
error InsufficientBalance(uint256 required, uint256 balance);
error InvalidAmount();
error InvalidCallData();
error InvalidConfig();
error InvalidContract();
error InvalidDestinationChain();
error InvalidFallbackAddress();
error InvalidReceiver();
error InvalidSendingToken();
error NativeAssetNotSupported();
error NativeAssetTransferFailed();
error NoSwapDataProvided();
error NoSwapFromZeroBalance();
error NotAContract();
error NotInitialized();
error NoTransferToNullAddress();
error NullAddrIsNotAnERC20Token();
error NullAddrIsNotAValidSpender();
error OnlyContractOwner();
error RecoveryAddressCannotBeZero();
error ReentrancyError();
error TokenNotSupported();
error TransferFromFailed();
error UnAuthorized();
error UnsupportedChainId(uint256 chainId);
error WithdrawFailed();
error ZeroAmount();
// lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// src/Interfaces/ILiFi.sol
/// @title LIFI Interface
/// @author LI.FI (https://li.fi)
/// @custom:version 1.0.0
interface ILiFi {
/// Structs ///
struct BridgeData {
bytes32 transactionId;
string bridge;
string integrator;
address referrer;
address sendingAssetId;
address receiver;
uint256 minAmount;
uint256 destinationChainId;
bool hasSourceSwaps;
bool hasDestinationCall;
}
/// Events ///
event LiFiTransferStarted(ILiFi.BridgeData bridgeData);
event LiFiTransferCompleted(
bytes32 indexed transactionId,
address receivingAssetId,
address receiver,
uint256 amount,
uint256 timestamp
);
event LiFiTransferRecovered(
bytes32 indexed transactionId,
address receivingAssetId,
address receiver,
uint256 amount,
uint256 timestamp
);
event LiFiGenericSwapCompleted(
bytes32 indexed transactionId,
string integrator,
string referrer,
address receiver,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount
);
// Deprecated but kept here to include in ABI to parse historic events
event LiFiSwappedGeneric(
bytes32 indexed transactionId,
string integrator,
string referrer,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount
);
}
// src/Libraries/LibBytes.sol
/// @custom:version 1.0.0
library LibBytes {
// solhint-disable no-inline-assembly
// LibBytes specific errors
error SliceOverflow();
error SliceOutOfBounds();
error AddressOutOfBounds();
bytes16 private constant _SYMBOLS = "0123456789abcdef";
// -------------------------
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
if (_length + 31 < _length) revert SliceOverflow();
if (_bytes.length < _start + _length) revert SliceOutOfBounds();
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(
add(tempBytes, lengthmod),
mul(0x20, iszero(lengthmod))
)
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(
add(
add(_bytes, lengthmod),
mul(0x20, iszero(lengthmod))
),
_start
)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(
bytes memory _bytes,
uint256 _start
) internal pure returns (address) {
if (_bytes.length < _start + 20) {
revert AddressOutOfBounds();
}
address tempAddress;
assembly {
tempAddress := div(
mload(add(add(_bytes, 0x20), _start)),
0x1000000000000000000000000
)
}
return tempAddress;
}
/// Copied from OpenZeppelin's `Strings.sol` utility library.
/// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/8335676b0e99944eef6a742e16dcd9ff6e68e609/contracts/utils/Strings.sol
function toHexString(
uint256 value,
uint256 length
) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
}
// lib/solady/src/utils/SafeTransferLib.sol
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
/// responsibility is delegated to the caller.
library SafeTransferLib_0 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ETH transfer has failed.
error ETHTransferFailed();
/// @dev The ERC20 `transferFrom` has failed.
error TransferFromFailed();
/// @dev The ERC20 `transfer` has failed.
error TransferFailed();
/// @dev The ERC20 `approve` has failed.
error ApproveFailed();
/// @dev The Permit2 operation has failed.
error Permit2Failed();
/// @dev The Permit2 amount must be less than `2**160 - 1`.
error Permit2AmountOverflow();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
/// @dev Suggested gas stipend for contract receiving ETH to perform a few
/// storage reads and writes, but low enough to prevent griefing.
uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
/// @dev The unique EIP-712 domain domain separator for the DAI token contract.
bytes32 internal constant DAI_DOMAIN_SEPARATOR =
0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;
/// @dev The address for the WETH9 contract on Ethereum mainnet.
address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
/// @dev The canonical Permit2 address.
/// [Github](https://github.com/Uniswap/permit2)
/// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ETH OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
//
// The regular variants:
// - Forwards all remaining gas to the target.
// - Reverts if the target reverts.
// - Reverts if the current contract has insufficient balance.
//
// The force variants:
// - Forwards with an optional gas stipend
// (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
// - If the target reverts, or if the gas stipend is exhausted,
// creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
// Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
// - Reverts if the current contract has insufficient balance.
//
// The try variants:
// - Forwards with a mandatory gas stipend.
// - Instead of reverting, returns whether the transfer succeeded.
/// @dev Sends `amount` (in wei) ETH to `to`.
function safeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Sends all the ETH in the current contract to `to`.
function safeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// Transfer all the ETH and check if it succeeded or not.
if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// forgefmt: disable-next-item
if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
}
}
/// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
function trySafeTransferAllETH(address to, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for
/// the current contract to manage.
function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x60, amount) // Store the `amount` argument.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
///
/// The `from` account must have at least `amount` approved for the current contract to manage.
function trySafeTransferFrom(address token, address from, address to, uint256 amount)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x60, amount) // Store the `amount` argument.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
success :=
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends all of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have their entire balance approved for the current contract to manage.
function safeTransferAllFrom(address token, address from, address to)
internal
returns (uint256 amount)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransfer(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sends all of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransferAll(address token, address to) internal returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
mstore(0x20, address()) // Store the address of the current contract.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x14, to) // Store the `to` argument.
amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// Reverts upon failure.
function safeApprove(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
/// then retries the approval again (some tokens, e.g. USDT, requires this).
/// Reverts upon failure.
function safeApproveWithRetry(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, retrying upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x34, 0) // Store 0 for the `amount`.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
mstore(0x34, amount) // Store back the original `amount`.
// Retry the approval, reverting upon failure.
if iszero(
and(
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Returns the amount of ERC20 `token` owned by `account`.
/// Returns zero if the `token` does not exist.
function balanceOf(address token, address account) internal view returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, account) // Store the `account` argument.
mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
amount :=
mul( // The arguments of `mul` are evaluated from right to left.
mload(0x20),
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
)
)
}
}
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
/// If the initial attempt fails, try to use Permit2 to transfer the token.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for the current contract to manage.
function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
if (!trySafeTransferFrom(token, from, to, amount)) {
permit2TransferFrom(token, from, to, amount);
}
}
/// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
/// Reverts upon failure.
function permit2TransferFrom(address token, address from, address to, uint256 amount)
internal
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(add(m, 0x74), shr(96, shl(96, token)))
mstore(add(m, 0x54), amount)
mstore(add(m, 0x34), to)
mstore(add(m, 0x20), shl(96, from))
// `transferFrom(address,address,uint160,address)`.
mstore(m, 0x36c78516000000000000000000000000)
let p := PERMIT2
let exists := eq(chainid(), 1)
if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) {
mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
}
}
}
/// @dev Permit a user to spend a given amount of
/// another user's tokens via native EIP-2612 permit if possible, falling
/// back to Permit2 if native permit fails or is not implemented on the token.
function permit2(
address token,
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
for {} shl(96, xor(token, WETH9)) {} {
mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
// Gas stipend to limit gas burn for tokens that don't refund gas when
// an non-existing function is called. 5K should be enough for a SLOAD.
staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
)
) { break }
// After here, we can be sure that token is a contract.
let m := mload(0x40)
mstore(add(m, 0x34), spender)
mstore(add(m, 0x20), shl(96, owner))
mstore(add(m, 0x74), deadline)
if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
mstore(0x14, owner)
mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
// `nonces` is already at `add(m, 0x54)`.
// `1` is already stored at `add(m, 0x94)`.
mstore(add(m, 0xb4), and(0xff, v))
mstore(add(m, 0xd4), r)
mstore(add(m, 0xf4), s)
success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
break
}
mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
mstore(add(m, 0x54), amount)
mstore(add(m, 0x94), and(0xff, v))
mstore(add(m, 0xb4), r)
mstore(add(m, 0xd4), s)
success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
break
}
}
if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
}
/// @dev Simple permit on the Permit2 contract.
function simplePermit2(
address token,
address owner,
address spender,
uint256 amount,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(m, 0x927da105) // `allowance(address,address,address)`.
{
let addressMask := shr(96, not(0))
mstore(add(m, 0x20), and(addressMask, owner))
mstore(add(m, 0x40), and(addressMask, token))
mstore(add(m, 0x60), and(addressMask, spender))
mstore(add(m, 0xc0), and(addressMask, spender))
}
let p := mul(PERMIT2, iszero(shr(160, amount)))
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
)
) {
mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
revert(add(0x18, shl(2, iszero(p))), 0x04)
}
mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
// `owner` is already `add(m, 0x20)`.
// `token` is already at `add(m, 0x40)`.
mstore(add(m, 0x60), amount)
mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
// `nonce` is already at `add(m, 0xa0)`.
// `spender` is already at `add(m, 0xc0)`.
mstore(add(m, 0xe0), deadline)
mstore(add(m, 0x100), 0x100) // `signature` offset.
mstore(add(m, 0x120), 0x41) // `signature` length.
mstore(add(m, 0x140), r)
mstore(add(m, 0x160), s)
mstore(add(m, 0x180), shl(248, v))
if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) {
mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
revert(0x1c, 0x04)
}
}
}
}
// src/Libraries/LibAllowList.sol
/// @custom:version 1.0.0
/// @title Lib Allow List
/// @author LI.FI (https://li.fi)
/// @notice Library for managing and accessing the conract address allow list
library LibAllowList {
/// Storage ///
bytes32 internal constant NAMESPACE =
keccak256("com.lifi.library.allow.list");
struct AllowListStorage {
mapping(address => bool) allowlist;
mapping(bytes4 => bool) selectorAllowList;
address[] contracts;
}
/// @dev Adds a contract address to the allow list
/// @param _contract the contract address to add
function addAllowedContract(address _contract) internal {
_checkAddress(_contract);
AllowListStorage storage als = _getStorage();
if (als.allowlist[_contract]) return;
als.allowlist[_contract] = true;
als.contracts.push(_contract);
}
/// @dev Checks whether a contract address has been added to the allow list
/// @param _contract the contract address to check
function contractIsAllowed(
address _contract
) internal view returns (bool) {
return _getStorage().allowlist[_contract];
}
/// @dev Remove a contract address from the allow list
/// @param _contract the contract address to remove
function removeAllowedContract(address _contract) internal {
AllowListStorage storage als = _getStorage();
if (!als.allowlist[_contract]) {
return;
}
als.allowlist[_contract] = false;
uint256 length = als.contracts.length;
// Find the contract in the list
for (uint256 i = 0; i < length; i++) {
if (als.contracts[i] == _contract) {
// Move the last element into the place to delete
als.contracts[i] = als.contracts[length - 1];
// Remove the last element
als.contracts.pop();
break;
}
}
}
/// @dev Fetch contract addresses from the allow list
function getAllowedContracts() internal view returns (address[] memory) {
return _getStorage().contracts;
}
/// @dev Add a selector to the allow list
/// @param _selector the selector to add
function addAllowedSelector(bytes4 _selector) internal {
_getStorage().selectorAllowList[_selector] = true;
}
/// @dev Removes a selector from the allow list
/// @param _selector the selector to remove
function removeAllowedSelector(bytes4 _selector) internal {
_getStorage().selectorAllowList[_selector] = false;
}
/// @dev Returns if selector has been added to the allow list
/// @param _selector the selector to check
function selectorIsAllowed(bytes4 _selector) internal view returns (bool) {
return _getStorage().selectorAllowList[_selector];
}
/// @dev Fetch local storage struct
function _getStorage()
internal
pure
returns (AllowListStorage storage als)
{
bytes32 position = NAMESPACE;
// solhint-disable-next-line no-inline-assembly
assembly {
als.slot := position
}
}
/// @dev Contains business logic for validating a contract address.
/// @param _contract address of the dex to check
function _checkAddress(address _contract) private view {
if (_contract == address(0)) revert InvalidContract();
if (_contract.code.length == 0) revert InvalidContract();
}
}
// src/Libraries/LibUtil.sol
/// @custom:version 1.0.0
library LibUtil {
using LibBytes for bytes;
function getRevertMsg(
bytes memory _res
) internal pure returns (string memory) {
// If the _res length is less than 68, then the transaction failed silently (without a revert message)
if (_res.length < 68) return "Transaction reverted silently";
bytes memory revertData = _res.slice(4, _res.length - 4); // Remove the selector which is the first 4 bytes
return abi.decode(revertData, (string)); // All that remains is the revert string
}
/// @notice Determines whether the given address is the zero address
/// @param addr The address to verify
/// @return Boolean indicating if the address is the zero address
function isZeroAddress(address addr) internal pure returns (bool) {
return addr == address(0);
}
function revertWith(bytes memory data) internal pure {
assembly {
let dataSize := mload(data) // Load the size of the data
let dataPtr := add(data, 0x20) // Advance data pointer to the next word
revert(dataPtr, dataSize) // Revert with the given data
}
}
}
// lib/solmate/src/utils/SafeTransferLib.sol
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib_1 {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
// src/Libraries/LibAsset.sol
/// @title LibAsset
/// @custom:version 2.0.0
/// @notice This library contains helpers for dealing with onchain transfers
/// of assets, including accounting for the native asset `assetId`
/// conventions and any noncompliant ERC20 transfers
library LibAsset {
using SafeTransferLib_0 for address;
using SafeTransferLib_0 for address payable;
address internal constant NULL_ADDRESS = address(0);
address internal constant NON_EVM_ADDRESS =
0x11f111f111f111F111f111f111F111f111f111F1;
/// @dev All native assets use the empty address for their asset id
/// by convention
address internal constant NATIVE_ASSETID = NULL_ADDRESS;
/// @dev EIP-7702 delegation designator prefix for Account Abstraction
bytes3 internal constant DELEGATION_DESIGNATOR = 0xef0100;
/// @notice Gets the balance of the inheriting contract for the given asset
/// @param assetId The asset identifier to get the balance of
/// @return Balance held by contracts using this library (returns 0 if assetId does not exist)
function getOwnBalance(address assetId) internal view returns (uint256) {
return
isNativeAsset(assetId)
? address(this).balance
: assetId.balanceOf(address(this));
}
/// @notice Wrapper function to transfer a given asset (native or erc20) to
/// some recipient. Should handle all non-compliant return value
/// tokens as well by using the SafeERC20 contract by open zeppelin.
/// @param assetId Asset id for transfer (address(0) for native asset,
/// token address for erc20s)
/// @param recipient Address to send asset to
/// @param amount Amount to send to given recipient
function transferAsset(
address assetId,
address payable recipient,
uint256 amount
) internal {
if (isNativeAsset(assetId)) {
transferNativeAsset(recipient, amount);
} else {
transferERC20(assetId, recipient, amount);
}
}
/// @notice Transfers ether from the inheriting contract to a given
/// recipient
/// @param recipient Address to send ether to
/// @param amount Amount to send to given recipient
function transferNativeAsset(
address payable recipient,
uint256 amount
) private {
// make sure a meaningful receiver address was provided
if (recipient == NULL_ADDRESS) revert InvalidReceiver();
// transfer native asset (will revert if target reverts or contract has insufficient balance)
recipient.safeTransferETH(amount);
}
/// @notice Transfers tokens from the inheriting contract to a given recipient
/// @param assetId Token address to transfer
/// @param recipient Address to send tokens to
/// @param amount Amount to send to given recipient
function transferERC20(
address assetId,
address recipient,
uint256 amount
) private {
// make sure a meaningful receiver address was provided
if (recipient == NULL_ADDRESS) {
revert InvalidReceiver();
}
// transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
assetId.safeTransfer(recipient, amount);
}
/// @notice Transfers tokens from a sender to a given recipient
/// @param assetId Token address to transfer
/// @param from Address of sender/owner
/// @param recipient Address of recipient/spender
/// @param amount Amount to transfer from owner to spender
function transferFromERC20(
address assetId,
address from,
address recipient,
uint256 amount
) internal {
// check if native asset
if (isNativeAsset(assetId)) {
revert NullAddrIsNotAnERC20Token();
}
// make sure a meaningful receiver address was provided
if (recipient == NULL_ADDRESS) {
revert InvalidReceiver();
}
// transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
assetId.safeTransferFrom(from, recipient, amount);
}
/// @notice Pulls tokens from msg.sender
/// @param assetId Token address to transfer
/// @param amount Amount to transfer from owner
function depositAsset(address assetId, uint256 amount) internal {
// make sure a meaningful amount was provided
if (amount == 0) revert InvalidAmount();
// check if native asset
if (isNativeAsset(assetId)) {
// ensure msg.value is equal or greater than amount
if (msg.value < amount) revert InvalidAmount();
} else {
// transfer ERC20 assets (will revert if target reverts or contract has insufficient balance)
assetId.safeTransferFrom(msg.sender, address(this), amount);
}
}
function depositAssets(LibSwap.SwapData[] calldata swaps) internal {
for (uint256 i = 0; i < swaps.length; ) {
LibSwap.SwapData calldata swap = swaps[i];
if (swap.requiresDeposit) {
depositAsset(swap.sendingAssetId, swap.fromAmount);
}
unchecked {
i++;
}
}
}
/// @notice If the current allowance is insufficient, the allowance for a given spender
/// is set to MAX_UINT.
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param amount allowance amount required for current transaction
function maxApproveERC20(
IERC20 assetId,
address spender,
uint256 amount
) internal {
approveERC20(assetId, spender, amount, type(uint256).max);
}
/// @notice If the current allowance is insufficient, the allowance for a given spender
/// is set to the amount provided
/// @param assetId Token address to transfer
/// @param spender Address to give spend approval to
/// @param requiredAllowance Allowance required for current transaction
/// @param setAllowanceTo The amount the allowance should be set to if current allowance is insufficient
function approveERC20(
IERC20 assetId,
address spender,
uint256 requiredAllowance,
uint256 setAllowanceTo
) internal {
if (isNativeAsset(address(assetId))) {
return;
}
// make sure a meaningful spender address was provided
if (spender == NULL_ADDRESS) {
revert NullAddrIsNotAValidSpender();
}
// check if allowance is sufficient, otherwise set allowance to provided amount
// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
// then retries the approval again (some tokens, e.g. USDT, requires this).
// Reverts upon failure
if (assetId.allowance(address(this), spender) < requiredAllowance) {
address(assetId).safeApproveWithRetry(spender, setAllowanceTo);
}
}
/// @notice Determines whether the given assetId is the native asset
/// @param assetId The asset identifier to evaluate
/// @return Boolean indicating if the asset is the native asset
function isNativeAsset(address assetId) internal pure returns (bool) {
return assetId == NATIVE_ASSETID;
}
/// @notice Checks if the given address is a contract (including EIP‑7702 AA‑wallets)
/// Returns true for any account with runtime code or with the 0xef0100 prefix (EIP‑7702).
/// Limitations:
/// - Still returns false during construction phase of a contract
/// - Cannot distinguish between EOA and self-destructed contract
/// @param account The address to be checked
function isContract(address account) internal view returns (bool) {
bytes memory code = new bytes(23); // 3 bytes prefix + 20 bytes address
assembly {
extcodecopy(account, add(code, 0x20), 0, 23)
}
// Check for delegation designator prefix
bytes3 prefix;
assembly {
prefix := mload(add(code, 32))
}
if (prefix == DELEGATION_DESIGNATOR) {
// Extract delegate address (next 20 bytes)
address delegateAddr;
assembly {
delegateAddr := mload(add(add(code, 0x20), 3))
delegateAddr := shr(96, delegateAddr)
}
// Only check first level of delegation
uint256 delegateSize;
assembly {
delegateSize := extcodesize(delegateAddr)
}
return delegateSize > 0;
}
// If not delegated, check if it's a regular contract
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
}
// src/Libraries/LibSwap.sol
/// @title LibSwap
/// @custom:version 1.1.0
/// @notice This library contains functionality to execute mostly swaps but also
/// other calls such as fee collection, token wrapping/unwrapping or
/// sending gas to destination chain
library LibSwap {
/// @notice Struct containing all necessary data to execute a swap or generic call
/// @param callTo The address of the contract to call for executing the swap
/// @param approveTo The address that will receive token approval (can be different than callTo for some DEXs)
/// @param sendingAssetId The address of the token being sent
/// @param receivingAssetId The address of the token expected to be received
/// @param fromAmount The exact amount of the sending asset to be used in the call
/// @param callData Encoded function call data to be sent to the `callTo` contract
/// @param requiresDeposit A flag indicating whether the tokens must be deposited (pulled) before the call
struct SwapData {
address callTo;
address approveTo;
address sendingAssetId;
address receivingAssetId;
uint256 fromAmount;
bytes callData;
bool requiresDeposit;
}
/// @notice Emitted after a successful asset swap or related operation
/// @param transactionId The unique identifier associated with the swap operation
/// @param dex The address of the DEX or contract that handled the swap
/// @param fromAssetId The address of the token that was sent
/// @param toAssetId The address of the token that was received
/// @param fromAmount The amount of `fromAssetId` sent
/// @param toAmount The amount of `toAssetId` received
/// @param timestamp The timestamp when the swap was executed
event AssetSwapped(
bytes32 transactionId,
address dex,
address fromAssetId,
address toAssetId,
uint256 fromAmount,
uint256 toAmount,
uint256 timestamp
);
function swap(bytes32 transactionId, SwapData calldata _swap) internal {
// make sure callTo is a contract
if (!LibAsset.isContract(_swap.callTo)) revert InvalidContract();
// make sure that fromAmount is not 0
uint256 fromAmount = _swap.fromAmount;
if (fromAmount == 0) revert NoSwapFromZeroBalance();
// determine how much native value to send with the swap call
uint256 nativeValue = LibAsset.isNativeAsset(_swap.sendingAssetId)
? _swap.fromAmount
: 0;
// store initial balance (required for event emission)
uint256 initialReceivingAssetBalance = LibAsset.getOwnBalance(
_swap.receivingAssetId
);
// max approve (if ERC20)
if (nativeValue == 0) {
LibAsset.maxApproveERC20(
IERC20(_swap.sendingAssetId),
_swap.approveTo,
_swap.fromAmount
);
}
// we used to have a sending asset balance check here (initialSendingAssetBalance >= _swap.fromAmount)
// this check was removed to allow for more flexibility with rebasing/fee-taking tokens
// the general assumption is that if not enough tokens are available to execute the calldata, the transaction will fail anyway
// the error message might not be as explicit though
// execute the swap
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = _swap.callTo.call{
value: nativeValue
}(_swap.callData);
if (!success) {
LibUtil.revertWith(res);
}
// get post-swap balance
uint256 newBalance = LibAsset.getOwnBalance(_swap.receivingAssetId);
// emit event
emit AssetSwapped(
transactionId,
_swap.callTo,
_swap.sendingAssetId,
_swap.receivingAssetId,
_swap.fromAmount,
newBalance > initialReceivingAssetBalance
? newBalance - initialReceivingAssetBalance
: newBalance,
block.timestamp
);
}
}
// src/Facets/GenericSwapFacetV3.sol
/// @title GenericSwapFacetV3
/// @author LI.FI (https://li.fi)
/// @notice Provides gas-optimized functionality for fee collection and for swapping through any APPROVED DEX
/// @dev Can only execute calldata for APPROVED function selectors
/// @custom:version 1.0.2
contract GenericSwapFacetV3 is ILiFi {
using SafeTransferLib_1 for ERC20;
/// Storage
address public immutable NATIVE_ADDRESS;
/// Constructor
/// @param _nativeAddress the address of the native token for this network
constructor(address _nativeAddress) {
NATIVE_ADDRESS = _nativeAddress;
}
/// External Methods ///
// SINGLE SWAPS
/// @notice Performs a single swap from an ERC20 token to another ERC20 token
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensSingleV3ERC20ToERC20(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData calldata _swapData
) external {
_depositAndSwapERC20Single(_swapData, _receiver);
address receivingAssetId = _swapData.receivingAssetId;
address sendingAssetId = _swapData.sendingAssetId;
// get contract's balance (which will be sent in full to user)
uint256 amountReceived = ERC20(receivingAssetId).balanceOf(
address(this)
);
// ensure that minAmountOut was received
if (amountReceived < _minAmountOut)
revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
// transfer funds to receiver
ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived);
// emit events (both required for tracking)
uint256 fromAmount = _swapData.fromAmount;
emit LibSwap.AssetSwapped(
_transactionId,
_swapData.callTo,
sendingAssetId,
receivingAssetId,
fromAmount,
amountReceived,
block.timestamp
);
emit ILiFi.LiFiGenericSwapCompleted(
_transactionId,
_integrator,
_referrer,
_receiver,
sendingAssetId,
receivingAssetId,
fromAmount,
amountReceived
);
}
/// @notice Performs a single swap from an ERC20 token to the network's native token
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensSingleV3ERC20ToNative(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData calldata _swapData
) external {
_depositAndSwapERC20Single(_swapData, _receiver);
// get contract's balance (which will be sent in full to user)
uint256 amountReceived = address(this).balance;
// ensure that minAmountOut was received
if (amountReceived < _minAmountOut)
revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
// transfer funds to receiver
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = _receiver.call{ value: amountReceived }("");
if (!success) revert NativeAssetTransferFailed();
// emit events (both required for tracking)
address sendingAssetId = _swapData.sendingAssetId;
uint256 fromAmount = _swapData.fromAmount;
emit LibSwap.AssetSwapped(
_transactionId,
_swapData.callTo,
sendingAssetId,
NATIVE_ADDRESS,
fromAmount,
amountReceived,
block.timestamp
);
emit ILiFi.LiFiGenericSwapCompleted(
_transactionId,
_integrator,
_referrer,
_receiver,
sendingAssetId,
NATIVE_ADDRESS,
fromAmount,
amountReceived
);
}
/// @notice Performs a single swap from the network's native token to ERC20 token
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensSingleV3NativeToERC20(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData calldata _swapData
) external payable {
address callTo = _swapData.callTo;
// ensure that contract (callTo) and function selector are whitelisted
if (
!(LibAllowList.contractIsAllowed(callTo) &&
LibAllowList.selectorIsAllowed(bytes4(_swapData.callData[:4])))
) revert ContractCallNotAllowed();
// execute swap
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = callTo.call{ value: msg.value }(
_swapData.callData
);
if (!success) {
LibUtil.revertWith(res);
}
_returnPositiveSlippageNative(_receiver);
// get contract's balance (which will be sent in full to user)
address receivingAssetId = _swapData.receivingAssetId;
uint256 amountReceived = ERC20(receivingAssetId).balanceOf(
address(this)
);
// ensure that minAmountOut was received
if (amountReceived < _minAmountOut)
revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
// transfer funds to receiver
ERC20(receivingAssetId).safeTransfer(_receiver, amountReceived);
// emit events (both required for tracking)
uint256 fromAmount = _swapData.fromAmount;
emit LibSwap.AssetSwapped(
_transactionId,
callTo,
NATIVE_ADDRESS,
receivingAssetId,
fromAmount,
amountReceived,
block.timestamp
);
emit ILiFi.LiFiGenericSwapCompleted(
_transactionId,
_integrator,
_referrer,
_receiver,
NATIVE_ADDRESS,
receivingAssetId,
fromAmount,
amountReceived
);
}
// MULTIPLE SWAPS
/// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with native
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensMultipleV3ERC20ToNative(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData[] calldata _swapData
) external {
_depositMultipleERC20Tokens(_swapData);
_executeSwaps(_swapData, _transactionId, _receiver);
_transferNativeTokensAndEmitEvent(
_transactionId,
_integrator,
_referrer,
_receiver,
_minAmountOut,
_swapData
);
}
/// @notice Performs multiple swaps in one transaction, starting with ERC20 and ending with ERC20
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensMultipleV3ERC20ToERC20(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData[] calldata _swapData
) external {
_depositMultipleERC20Tokens(_swapData);
_executeSwaps(_swapData, _transactionId, _receiver);
_transferERC20TokensAndEmitEvent(
_transactionId,
_integrator,
_referrer,
_receiver,
_minAmountOut,
_swapData
);
}
/// @notice Performs multiple swaps in one transaction, starting with native and ending with ERC20
/// @param _transactionId the transaction id associated with the operation
/// @param _integrator the name of the integrator
/// @param _referrer the address of the referrer
/// @param _receiver the address to receive the swapped tokens into (also excess tokens)
/// @param _minAmountOut the minimum amount of the final asset to receive
/// @param _swapData an object containing swap related data to perform swaps before bridging
function swapTokensMultipleV3NativeToERC20(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData[] calldata _swapData
) external payable {
_executeSwaps(_swapData, _transactionId, _receiver);
_transferERC20TokensAndEmitEvent(
_transactionId,
_integrator,
_referrer,
_receiver,
_minAmountOut,
_swapData
);
}
/// Private helper methods ///
function _depositMultipleERC20Tokens(
LibSwap.SwapData[] calldata _swapData
) private {
// initialize variables before loop to save gas
uint256 numOfSwaps = _swapData.length;
LibSwap.SwapData calldata currentSwap;
// go through all swaps and deposit tokens, where required
for (uint256 i = 0; i < numOfSwaps; ) {
currentSwap = _swapData[i];
if (currentSwap.requiresDeposit) {
// we will not check msg.value as tx will fail anyway if not enough value available
// thus we only deposit ERC20 tokens here
ERC20(currentSwap.sendingAssetId).safeTransferFrom(
msg.sender,
address(this),
currentSwap.fromAmount
);
}
unchecked {
++i;
}
}
}
function _depositAndSwapERC20Single(
LibSwap.SwapData calldata _swapData,
address _receiver
) private {
ERC20 sendingAsset = ERC20(_swapData.sendingAssetId);
uint256 fromAmount = _swapData.fromAmount;
// deposit funds
sendingAsset.safeTransferFrom(msg.sender, address(this), fromAmount);
// ensure that contract (callTo) and function selector are whitelisted
address callTo = _swapData.callTo;
address approveTo = _swapData.approveTo;
bytes calldata callData = _swapData.callData;
if (
!(LibAllowList.contractIsAllowed(callTo) &&
LibAllowList.selectorIsAllowed(bytes4(callData[:4])))
) revert ContractCallNotAllowed();
// ensure that approveTo address is also whitelisted if it differs from callTo
if (approveTo != callTo && !LibAllowList.contractIsAllowed(approveTo))
revert ContractCallNotAllowed();
// check if the current allowance is sufficient
uint256 currentAllowance = sendingAsset.allowance(
address(this),
approveTo
);
// check if existing allowance is sufficient
if (currentAllowance < fromAmount) {
// check if is non-zero, set to 0 if not
if (currentAllowance != 0) sendingAsset.safeApprove(approveTo, 0);
// set allowance to uint max to avoid future approvals
sendingAsset.safeApprove(approveTo, type(uint256).max);
}
// execute swap
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory res) = callTo.call(callData);
if (!success) {
LibUtil.revertWith(res);
}
_returnPositiveSlippageERC20(sendingAsset, _receiver);
}
// @dev: this function will not work with swapData that has multiple swaps with the same sendingAssetId
// as the _returnPositiveSlippage... functionality will refund all remaining tokens after the first swap
// We accept this fact since the use case is not common yet. As an alternative you can always use the
// "swapTokensGeneric" function of the original GenericSwapFacet
function _executeSwaps(
LibSwap.SwapData[] calldata _swapData,
bytes32 _transactionId,
address _receiver
) private {
// initialize variables before loop to save gas
uint256 numOfSwaps = _swapData.length;
ERC20 sendingAsset;
address sendingAssetId;
address receivingAssetId;
LibSwap.SwapData calldata currentSwap;
bool success;
bytes memory returnData;
uint256 currentAllowance;
// go through all swaps
for (uint256 i = 0; i < numOfSwaps; ) {
currentSwap = _swapData[i];
sendingAssetId = currentSwap.sendingAssetId;
sendingAsset = ERC20(currentSwap.sendingAssetId);
receivingAssetId = currentSwap.receivingAssetId;
// check if callTo address is whitelisted
if (
!LibAllowList.contractIsAllowed(currentSwap.callTo) ||
!LibAllowList.selectorIsAllowed(
bytes4(currentSwap.callData[:4])
)
) {
revert ContractCallNotAllowed();
}
// if approveTo address is different to callTo, check if it's whitelisted, too
if (
currentSwap.approveTo != currentSwap.callTo &&
!LibAllowList.contractIsAllowed(currentSwap.approveTo)
) {
revert ContractCallNotAllowed();
}
if (LibAsset.isNativeAsset(sendingAssetId)) {
// Native
// execute the swap
(success, returnData) = currentSwap.callTo.call{
value: currentSwap.fromAmount
}(currentSwap.callData);
if (!success) {
LibUtil.revertWith(returnData);
}
// return any potential leftover sendingAsset tokens
// but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap)
if (sendingAssetId != receivingAssetId)
_returnPositiveSlippageNative(_receiver);
} else {
// ERC20
// check if the current allowance is sufficient
currentAllowance = sendingAsset.allowance(
address(this),
currentSwap.approveTo
);
if (currentAllowance < currentSwap.fromAmount) {
sendingAsset.safeApprove(currentSwap.approveTo, 0);
sendingAsset.safeApprove(
currentSwap.approveTo,
type(uint256).max
);
}
// execute the swap
(success, returnData) = currentSwap.callTo.call(
currentSwap.callData
);
if (!success) {
LibUtil.revertWith(returnData);
}
// return any potential leftover sendingAsset tokens
// but only for swaps, not for fee collections (otherwise the whole amount would be returned before the actual swap)
if (sendingAssetId != receivingAssetId)
_returnPositiveSlippageERC20(sendingAsset, _receiver);
}
// emit AssetSwapped event
// @dev: this event might in some cases emit inaccurate information. e.g. if a token is swapped and this contract already held a balance of the receivingAsset
// then the event will show swapOutputAmount + existingBalance as toAmount. We accept this potential inaccuracy in return for gas savings and may update this
// at a later stage when the described use case becomes more common
emit LibSwap.AssetSwapped(
_transactionId,
currentSwap.callTo,
sendingAssetId,
receivingAssetId,
currentSwap.fromAmount,
LibAsset.isNativeAsset(receivingAssetId)
? address(this).balance
: ERC20(receivingAssetId).balanceOf(address(this)),
block.timestamp
);
unchecked {
++i;
}
}
}
function _transferERC20TokensAndEmitEvent(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData[] calldata _swapData
) private {
// determine the end result of the swap
address finalAssetId = _swapData[_swapData.length - 1]
.receivingAssetId;
uint256 amountReceived = ERC20(finalAssetId).balanceOf(address(this));
// make sure minAmountOut was received
if (amountReceived < _minAmountOut)
revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
// transfer to receiver
ERC20(finalAssetId).safeTransfer(_receiver, amountReceived);
// emit event
emit ILiFi.LiFiGenericSwapCompleted(
_transactionId,
_integrator,
_referrer,
_receiver,
_swapData[0].sendingAssetId,
finalAssetId,
_swapData[0].fromAmount,
amountReceived
);
}
function _transferNativeTokensAndEmitEvent(
bytes32 _transactionId,
string calldata _integrator,
string calldata _referrer,
address payable _receiver,
uint256 _minAmountOut,
LibSwap.SwapData[] calldata _swapData
) private {
uint256 amountReceived = address(this).balance;
// make sure minAmountOut was received
if (amountReceived < _minAmountOut)
revert CumulativeSlippageTooHigh(_minAmountOut, amountReceived);
// transfer funds to receiver
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = _receiver.call{ value: amountReceived }("");
if (!success) {
revert NativeAssetTransferFailed();
}
// emit event
emit ILiFi.LiFiGenericSwapCompleted(
_transactionId,
_integrator,
_referrer,
_receiver,
_swapData[0].sendingAssetId,
NATIVE_ADDRESS,
_swapData[0].fromAmount,
amountReceived
);
}
// returns any unused 'sendingAsset' tokens (=> positive slippage) to the receiver address
function _returnPositiveSlippageERC20(
ERC20 sendingAsset,
address receiver
) private {
// if a balance exists in sendingAsset, it must be positive slippage
if (address(sendingAsset) != NATIVE_ADDRESS) {
uint256 sendingAssetBalance = sendingAsset.balanceOf(
address(this)
);
// we decided to change this value from 0 to 1 to have more flexibility with rebasing tokens that
// sometimes produce rounding errors. In those cases there might be 1 wei leftover at the end of a swap
// but this 1 wei is not transferable, so the tx reverts. We accept that 1 wei dust gets stuck in the contract
// with every tx as this does not represent a significant USD value in any relevant token.
if (sendingAssetBalance > 1) {
sendingAsset.safeTransfer(receiver, sendingAssetBalance);
}
}
}
// returns any unused native tokens (=> positive slippage) to the receiver address
function _returnPositiveSlippageNative(address receiver) private {
// if a native balance exists in sendingAsset, it must be positive slippage
uint256 nativeBalance = address(this).balance;
if (nativeBalance > 0) {
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = receiver.call{ value: nativeBalance }("");
if (!success) revert NativeAssetTransferFailed();
}
}
}