ETH Price: $1,978.07 (+0.21%)

Transaction Decoder

Block:
24482859 at Feb-18-2026 09:35:11 AM +UTC
Transaction Fee:
0.000002841398884 ETH $0.00562
Gas Used:
77,600 Gas / 0.036615965 Gwei

Emitted Events:

407 0xfe43578d0ff8afe83c6eb12d5e294bd4b70931a2.0x5e186f09b9c93491f14e277eea7faa5de6a2d4bda75a79af7a3684fbfb42da60( 0x5e186f09b9c93491f14e277eea7faa5de6a2d4bda75a79af7a3684fbfb42da60, 0x0000000000000000000000000000000000000000000000000000000000000002 )

Account State Difference:

  Address   Before After State Difference Code
(quasarbuilder)
16.590053287580695806 Eth16.590053316759149406 Eth0.0000000291784536
0x79D14553...882415d33
45.073526869253118671 Eth
Nonce: 80234
45.073524027854234671 Eth
Nonce: 80235
0.000002841398884
0xfE43578D...4b70931A2

Execution Trace

0xfe43578d0ff8afe83c6eb12d5e294bd4b70931a2.CALL( )
  • 0xc5bd131ceaeb72f15c66418bc2668332ab99de37.2810e1d6( )
    • Proxy.bb8aa1fc( )
      • DisputeGameFactory.gameAtIndex( _index=28756 ) => ( gameType_=42, timestamp_=1771103327, proxy_=0xE999538635fb2D49ACBa068EdF36051E445cF6aa )
      • 0xe999538635fb2d49acba068edf36051e445cf6aa.STATICCALL( )
        • 0xc5bd131ceaeb72f15c66418bc2668332ab99de37.200d2ed2( )
          File 1 of 2: Proxy
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Constants } from "../libraries/Constants.sol";
          /// @title Proxy
          /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
          ///         if the caller is address(0), meaning that the call originated from an off-chain
          ///         simulation.
          contract Proxy {
              /// @notice An event that is emitted each time the implementation is changed. This event is part
              ///         of the EIP-1967 specification.
              /// @param implementation The address of the implementation contract
              event Upgraded(address indexed implementation);
              /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
              ///         EIP-1967 specification.
              /// @param previousAdmin The previous owner of the contract
              /// @param newAdmin      The new owner of the contract
              event AdminChanged(address previousAdmin, address newAdmin);
              /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
              ///         eth_call to interact with this proxy without needing to use low-level storage
              ///         inspection. We assume that nobody is able to trigger calls from address(0) during
              ///         normal EVM execution.
              modifier proxyCallIfNotAdmin() {
                  if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                      _;
                  } else {
                      // This WILL halt the call frame on completion.
                      _doProxyCall();
                  }
              }
              /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
              ///         EIP-1967 admin storage slot so that accidental storage collision with the
              ///         implementation is not possible.
              /// @param _admin Address of the initial contract admin. Admin as the ability to access the
              ///               transparent proxy interface.
              constructor(address _admin) {
                  _changeAdmin(_admin);
              }
              // slither-disable-next-line locked-ether
              receive() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              // slither-disable-next-line locked-ether
              fallback() external payable {
                  // Proxy call by default.
                  _doProxyCall();
              }
              /// @notice Set the implementation contract address. The code at the given address will execute
              ///         when this contract is called.
              /// @param _implementation Address of the implementation contract.
              function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                  _setImplementation(_implementation);
              }
              /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
              ///         atomic execution of initialization-based upgrades.
              /// @param _implementation Address of the implementation contract.
              /// @param _data           Calldata to delegatecall the new implementation with.
              function upgradeToAndCall(
                  address _implementation,
                  bytes calldata _data
              )
                  public
                  payable
                  virtual
                  proxyCallIfNotAdmin
                  returns (bytes memory)
              {
                  _setImplementation(_implementation);
                  (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                  require(success, "Proxy: delegatecall to new implementation contract failed");
                  return returndata;
              }
              /// @notice Changes the owner of the proxy contract. Only callable by the owner.
              /// @param _admin New owner of the proxy contract.
              function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                  _changeAdmin(_admin);
              }
              /// @notice Gets the owner of the proxy contract.
              /// @return Owner address.
              function admin() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getAdmin();
              }
              //// @notice Queries the implementation address.
              /// @return Implementation address.
              function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                  return _getImplementation();
              }
              /// @notice Sets the implementation address.
              /// @param _implementation New implementation address.
              function _setImplementation(address _implementation) internal {
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      sstore(proxyImplementation, _implementation)
                  }
                  emit Upgraded(_implementation);
              }
              /// @notice Changes the owner of the proxy contract.
              /// @param _admin New owner of the proxy contract.
              function _changeAdmin(address _admin) internal {
                  address previous = _getAdmin();
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      sstore(proxyOwner, _admin)
                  }
                  emit AdminChanged(previous, _admin);
              }
              /// @notice Performs the proxy call via a delegatecall.
              function _doProxyCall() internal {
                  address impl = _getImplementation();
                  require(impl != address(0), "Proxy: implementation not initialized");
                  assembly {
                      // Copy calldata into memory at 0x0....calldatasize.
                      calldatacopy(0x0, 0x0, calldatasize())
                      // Perform the delegatecall, make sure to pass all available gas.
                      let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                      // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                      // overwrite the calldata that we just copied into memory but that doesn't really
                      // matter because we'll be returning in a second anyway.
                      returndatacopy(0x0, 0x0, returndatasize())
                      // Success == 0 means a revert. We'll revert too and pass the data up.
                      if iszero(success) { revert(0x0, returndatasize()) }
                      // Otherwise we'll just return and pass the data up.
                      return(0x0, returndatasize())
                  }
              }
              /// @notice Queries the implementation address.
              /// @return Implementation address.
              function _getImplementation() internal view returns (address) {
                  address impl;
                  bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                  assembly {
                      impl := sload(proxyImplementation)
                  }
                  return impl;
              }
              /// @notice Queries the owner of the proxy contract.
              /// @return Owner address.
              function _getAdmin() internal view returns (address) {
                  address owner;
                  bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                  assembly {
                      owner := sload(proxyOwner)
                  }
                  return owner;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { ResourceMetering } from "../L1/ResourceMetering.sol";
          /// @title Constants
          /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
          ///         the stuff used in multiple contracts. Constants that only apply to a single contract
          ///         should be defined in that contract instead.
          library Constants {
              /// @notice Special address to be used as the tx origin for gas estimation calls in the
              ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
              ///         the minimum gas limit specified by the user is not actually enough to execute the
              ///         given message and you're attempting to estimate the actual necessary gas limit. We
              ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
              ///         never have any code on any EVM chain.
              address internal constant ESTIMATION_ADDRESS = address(1);
              /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
              ///         CrossDomainMessenger contracts before an actual sender is set. This value is
              ///         non-zero to reduce the gas cost of message passing transactions.
              address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
              /// @notice The storage slot that holds the address of a proxy implementation.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
              bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                  0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
              /// @notice The storage slot that holds the address of the owner.
              /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
              bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
              /// @notice Returns the default values for the ResourceConfig. These are the recommended values
              ///         for a production network.
              function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                  ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                      maxResourceLimit: 20_000_000,
                      elasticityMultiplier: 10,
                      baseFeeMaxChangeDenominator: 8,
                      minimumBaseFee: 1 gwei,
                      systemTxMaxGas: 1_000_000,
                      maximumBaseFee: type(uint128).max
                  });
                  return config;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
          import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
          import { Burn } from "../libraries/Burn.sol";
          import { Arithmetic } from "../libraries/Arithmetic.sol";
          /// @custom:upgradeable
          /// @title ResourceMetering
          /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
          ///         updates automatically based on current demand.
          abstract contract ResourceMetering is Initializable {
              /// @notice Represents the various parameters that control the way in which resources are
              ///         metered. Corresponds to the EIP-1559 resource metering system.
              /// @custom:field prevBaseFee   Base fee from the previous block(s).
              /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
              /// @custom:field prevBlockNum  Last block number that the base fee was updated.
              struct ResourceParams {
                  uint128 prevBaseFee;
                  uint64 prevBoughtGas;
                  uint64 prevBlockNum;
              }
              /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
              ///         market. These values should be set with care as it is possible to set them in
              ///         a way that breaks the deposit gas market. The target resource limit is defined as
              ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
              ///         single word. There is additional space for additions in the future.
              /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
              ///                                            can be purchased per block.
              /// @custom:field elasticityMultiplier         Determines the target resource limit along with
              ///                                            the resource limit.
              /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
              /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
              ///                                            value.
              /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
              ///                                            transaction. This should be set to the same
              ///                                            number that the op-node sets as the gas limit
              ///                                            for the system transaction.
              /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
              ///                                            value.
              struct ResourceConfig {
                  uint32 maxResourceLimit;
                  uint8 elasticityMultiplier;
                  uint8 baseFeeMaxChangeDenominator;
                  uint32 minimumBaseFee;
                  uint32 systemTxMaxGas;
                  uint128 maximumBaseFee;
              }
              /// @notice EIP-1559 style gas parameters.
              ResourceParams public params;
              /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
              uint256[48] private __gap;
              /// @notice Meters access to a function based an amount of a requested resource.
              /// @param _amount Amount of the resource requested.
              modifier metered(uint64 _amount) {
                  // Record initial gas amount so we can refund for it later.
                  uint256 initialGas = gasleft();
                  // Run the underlying function.
                  _;
                  // Run the metering function.
                  _metered(_amount, initialGas);
              }
              /// @notice An internal function that holds all of the logic for metering a resource.
              /// @param _amount     Amount of the resource requested.
              /// @param _initialGas The amount of gas before any modifier execution.
              function _metered(uint64 _amount, uint256 _initialGas) internal {
                  // Update block number and base fee if necessary.
                  uint256 blockDiff = block.number - params.prevBlockNum;
                  ResourceConfig memory config = _resourceConfig();
                  int256 targetResourceLimit =
                      int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                  if (blockDiff > 0) {
                      // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                      // at which deposits can be created and therefore limit the potential for deposits to
                      // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                      int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                      int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                          / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                      // Update base fee by adding the base fee delta and clamp the resulting value between
                      // min and max.
                      int256 newBaseFee = Arithmetic.clamp({
                          _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                          _min: int256(uint256(config.minimumBaseFee)),
                          _max: int256(uint256(config.maximumBaseFee))
                      });
                      // If we skipped more than one block, we also need to account for every empty block.
                      // Empty block means there was no demand for deposits in that block, so we should
                      // reflect this lack of demand in the fee.
                      if (blockDiff > 1) {
                          // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                          // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                          // between min and max.
                          newBaseFee = Arithmetic.clamp({
                              _value: Arithmetic.cdexp({
                                  _coefficient: newBaseFee,
                                  _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                  _exponent: int256(blockDiff - 1)
                              }),
                              _min: int256(uint256(config.minimumBaseFee)),
                              _max: int256(uint256(config.maximumBaseFee))
                          });
                      }
                      // Update new base fee, reset bought gas, and update block number.
                      params.prevBaseFee = uint128(uint256(newBaseFee));
                      params.prevBoughtGas = 0;
                      params.prevBlockNum = uint64(block.number);
                  }
                  // Make sure we can actually buy the resource amount requested by the user.
                  params.prevBoughtGas += _amount;
                  require(
                      int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                      "ResourceMetering: cannot buy more gas than available gas limit"
                  );
                  // Determine the amount of ETH to be paid.
                  uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                  // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                  // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                  // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                  // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                  // during any 1 day period in the last 5 years, so should be fine.
                  uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                  // Give the user a refund based on the amount of gas they used to do all of the work up to
                  // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                  // effectively like a dynamic stipend (with a minimum value).
                  uint256 usedGas = _initialGas - gasleft();
                  if (gasCost > usedGas) {
                      Burn.gas(gasCost - usedGas);
                  }
              }
              /// @notice Virtual function that returns the resource config.
              ///         Contracts that inherit this contract must implement this function.
              /// @return ResourceConfig
              function _resourceConfig() internal virtual returns (ResourceConfig memory);
              /// @notice Sets initial resource parameter values.
              ///         This function must either be called by the initializer function of an upgradeable
              ///         child contract.
              // solhint-disable-next-line func-name-mixedcase
              function __ResourceMetering_init() internal onlyInitializing {
                  params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/Address.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard math utilities missing in the Solidity language.
           */
          library Math {
              enum Rounding {
                  Down, // Toward negative infinity
                  Up, // Toward infinity
                  Zero // Toward zero
              }
              /**
               * @dev Returns the largest of two numbers.
               */
              function max(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two numbers.
               */
              function min(uint256 a, uint256 b) internal pure returns (uint256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two numbers. The result is rounded towards
               * zero.
               */
              function average(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b) / 2 can overflow.
                  return (a & b) + (a ^ b) / 2;
              }
              /**
               * @dev Returns the ceiling of the division of two numbers.
               *
               * This differs from standard division with `/` in that it rounds up instead
               * of rounding down.
               */
              function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                  // (a + b - 1) / b can overflow on addition, so we distribute.
                  return a == 0 ? 0 : (a - 1) / b + 1;
              }
              /**
               * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
               * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
               * with further edits by Uniswap Labs also under MIT license.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 result) {
                  unchecked {
                      // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                      // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                      // variables such that product = prod1 * 2^256 + prod0.
                      uint256 prod0; // Least significant 256 bits of the product
                      uint256 prod1; // Most significant 256 bits of the product
                      assembly {
                          let mm := mulmod(x, y, not(0))
                          prod0 := mul(x, y)
                          prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                      }
                      // Handle non-overflow cases, 256 by 256 division.
                      if (prod1 == 0) {
                          return prod0 / denominator;
                      }
                      // Make sure the result is less than 2^256. Also prevents denominator == 0.
                      require(denominator > prod1);
                      ///////////////////////////////////////////////
                      // 512 by 256 division.
                      ///////////////////////////////////////////////
                      // Make division exact by subtracting the remainder from [prod1 prod0].
                      uint256 remainder;
                      assembly {
                          // Compute remainder using mulmod.
                          remainder := mulmod(x, y, denominator)
                          // Subtract 256 bit number from 512 bit number.
                          prod1 := sub(prod1, gt(remainder, prod0))
                          prod0 := sub(prod0, remainder)
                      }
                      // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                      // See https://cs.stackexchange.com/q/138556/92363.
                      // Does not overflow because the denominator cannot be zero at this stage in the function.
                      uint256 twos = denominator & (~denominator + 1);
                      assembly {
                          // Divide denominator by twos.
                          denominator := div(denominator, twos)
                          // Divide [prod1 prod0] by twos.
                          prod0 := div(prod0, twos)
                          // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                          twos := add(div(sub(0, twos), twos), 1)
                      }
                      // Shift in bits from prod1 into prod0.
                      prod0 |= prod1 * twos;
                      // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                      // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                      // four bits. That is, denominator * inv = 1 mod 2^4.
                      uint256 inverse = (3 * denominator) ^ 2;
                      // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                      // in modular arithmetic, doubling the correct bits in each step.
                      inverse *= 2 - denominator * inverse; // inverse mod 2^8
                      inverse *= 2 - denominator * inverse; // inverse mod 2^16
                      inverse *= 2 - denominator * inverse; // inverse mod 2^32
                      inverse *= 2 - denominator * inverse; // inverse mod 2^64
                      inverse *= 2 - denominator * inverse; // inverse mod 2^128
                      inverse *= 2 - denominator * inverse; // inverse mod 2^256
                      // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                      // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                      // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                      // is no longer required.
                      result = prod0 * inverse;
                      return result;
                  }
              }
              /**
               * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
               */
              function mulDiv(
                  uint256 x,
                  uint256 y,
                  uint256 denominator,
                  Rounding rounding
              ) internal pure returns (uint256) {
                  uint256 result = mulDiv(x, y, denominator);
                  if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                      result += 1;
                  }
                  return result;
              }
              /**
               * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
               *
               * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
               */
              function sqrt(uint256 a) internal pure returns (uint256) {
                  if (a == 0) {
                      return 0;
                  }
                  // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                  // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                  // `msb(a) <= a < 2*msb(a)`.
                  // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                  // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                  // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                  // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                  uint256 result = 1;
                  uint256 x = a;
                  if (x >> 128 > 0) {
                      x >>= 128;
                      result <<= 64;
                  }
                  if (x >> 64 > 0) {
                      x >>= 64;
                      result <<= 32;
                  }
                  if (x >> 32 > 0) {
                      x >>= 32;
                      result <<= 16;
                  }
                  if (x >> 16 > 0) {
                      x >>= 16;
                      result <<= 8;
                  }
                  if (x >> 8 > 0) {
                      x >>= 8;
                      result <<= 4;
                  }
                  if (x >> 4 > 0) {
                      x >>= 4;
                      result <<= 2;
                  }
                  if (x >> 2 > 0) {
                      result <<= 1;
                  }
                  // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                  // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                  // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                  // into the expected uint128 result.
                  unchecked {
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      result = (result + a / result) >> 1;
                      return min(result, a / result);
                  }
              }
              /**
               * @notice Calculates sqrt(a), following the selected rounding direction.
               */
              function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                  uint256 result = sqrt(a);
                  if (rounding == Rounding.Up && result * result < a) {
                      result += 1;
                  }
                  return result;
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          /// @title Burn
          /// @notice Utilities for burning stuff.
          library Burn {
              /// @notice Burns a given amount of ETH.
              /// @param _amount Amount of ETH to burn.
              function eth(uint256 _amount) internal {
                  new Burner{ value: _amount }();
              }
              /// @notice Burns a given amount of gas.
              /// @param _amount Amount of gas to burn.
              function gas(uint256 _amount) internal view {
                  uint256 i = 0;
                  uint256 initialGas = gasleft();
                  while (initialGas - gasleft() < _amount) {
                      ++i;
                  }
              }
          }
          /// @title Burner
          /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
          ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
          ///         from the circulating supply.
          contract Burner {
              constructor() payable {
                  selfdestruct(payable(address(this)));
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
          import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
          /// @title Arithmetic
          /// @notice Even more math than before.
          library Arithmetic {
              /// @notice Clamps a value between a minimum and maximum.
              /// @param _value The value to clamp.
              /// @param _min   The minimum value.
              /// @param _max   The maximum value.
              /// @return The clamped value.
              function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                  return SignedMath.min(SignedMath.max(_value, _min), _max);
              }
              /// @notice (c)oefficient (d)enominator (exp)onentiation function.
              ///         Returns the result of: c * (1 - 1/d)^exp.
              /// @param _coefficient Coefficient of the function.
              /// @param _denominator Fractional denominator.
              /// @param _exponent    Power function exponent.
              /// @return Result of c * (1 - 1/d)^exp.
              function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                  return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library Address {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionDelegateCall(target, data, "Address: low-level delegate call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a delegate call.
               *
               * _Available since v3.4._
               */
              function functionDelegateCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(isContract(target), "Address: delegate call to non-contract");
                  (bool success, bytes memory returndata) = target.delegatecall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
          pragma solidity ^0.8.0;
          /**
           * @dev Standard signed math utilities missing in the Solidity language.
           */
          library SignedMath {
              /**
               * @dev Returns the largest of two signed numbers.
               */
              function max(int256 a, int256 b) internal pure returns (int256) {
                  return a >= b ? a : b;
              }
              /**
               * @dev Returns the smallest of two signed numbers.
               */
              function min(int256 a, int256 b) internal pure returns (int256) {
                  return a < b ? a : b;
              }
              /**
               * @dev Returns the average of two signed numbers without overflow.
               * The result is rounded towards zero.
               */
              function average(int256 a, int256 b) internal pure returns (int256) {
                  // Formula from the book "Hacker's Delight"
                  int256 x = (a & b) + ((a ^ b) >> 1);
                  return x + (int256(uint256(x) >> 255) & (a ^ b));
              }
              /**
               * @dev Returns the absolute unsigned value of a signed value.
               */
              function abs(int256 n) internal pure returns (uint256) {
                  unchecked {
                      // must be unchecked in order to support `n = type(int256).min`
                      return uint256(n >= 0 ? n : -n);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity >=0.8.0;
          /// @notice Arithmetic library with operations for fixed-point numbers.
          /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
          library FixedPointMathLib {
              /*//////////////////////////////////////////////////////////////
                              SIMPLIFIED FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
              function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
              }
              function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
              }
              function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
              }
              function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                  return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
              }
              function powWad(int256 x, int256 y) internal pure returns (int256) {
                  // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                  return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
              }
              function expWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      // When the result is < 0.5 we return zero. This happens when
                      // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                      if (x <= -42139678854452767551) return 0;
                      // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                      // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                      if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                      // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                      // for more intermediate precision and a binary basis. This base conversion
                      // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                      x = (x << 78) / 5**18;
                      // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                      // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                      // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                      int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                      x = x - k * 54916777467707473351141471128;
                      // k is in the range [-61, 195].
                      // Evaluate using a (6, 7)-term rational approximation.
                      // p is made monic, we'll multiply by a scale factor later.
                      int256 y = x + 1346386616545796478920950773328;
                      y = ((y * x) >> 96) + 57155421227552351082224309758442;
                      int256 p = y + x - 94201549194550492254356042504812;
                      p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                      p = p * x + (4385272521454847904659076985693276 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      int256 q = x - 2855989394907223263936484059900;
                      q = ((q * x) >> 96) + 50020603652535783019961831881945;
                      q = ((q * x) >> 96) - 533845033583426703283633433725380;
                      q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                      q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                      q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial won't have zeros in the domain as all its roots are complex.
                          // No scaling is necessary because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r should be in the range (0.09, 0.25) * 2**96.
                      // We now need to multiply r by:
                      // * the scale factor s = ~6.031367120.
                      // * the 2**k factor from the range reduction.
                      // * the 1e18 / 2**96 factor for base conversion.
                      // We do this all at once, with an intermediate result in 2**213
                      // basis, so the final right shift is always by a positive amount.
                      r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                  }
              }
              function lnWad(int256 x) internal pure returns (int256 r) {
                  unchecked {
                      require(x > 0, "UNDEFINED");
                      // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                      // We do this by multiplying by 2**96 / 10**18. But since
                      // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                      // and add ln(2**96 / 10**18) at the end.
                      // Reduce range of x to (1, 2) * 2**96
                      // ln(2^k * x) = k * ln(2) + ln(x)
                      int256 k = int256(log2(uint256(x))) - 96;
                      x <<= uint256(159 - k);
                      x = int256(uint256(x) >> 159);
                      // Evaluate using a (8, 8)-term rational approximation.
                      // p is made monic, we will multiply by a scale factor later.
                      int256 p = x + 3273285459638523848632254066296;
                      p = ((p * x) >> 96) + 24828157081833163892658089445524;
                      p = ((p * x) >> 96) + 43456485725739037958740375743393;
                      p = ((p * x) >> 96) - 11111509109440967052023855526967;
                      p = ((p * x) >> 96) - 45023709667254063763336534515857;
                      p = ((p * x) >> 96) - 14706773417378608786704636184526;
                      p = p * x - (795164235651350426258249787498 << 96);
                      // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                      // q is monic by convention.
                      int256 q = x + 5573035233440673466300451813936;
                      q = ((q * x) >> 96) + 71694874799317883764090561454958;
                      q = ((q * x) >> 96) + 283447036172924575727196451306956;
                      q = ((q * x) >> 96) + 401686690394027663651624208769553;
                      q = ((q * x) >> 96) + 204048457590392012362485061816622;
                      q = ((q * x) >> 96) + 31853899698501571402653359427138;
                      q = ((q * x) >> 96) + 909429971244387300277376558375;
                      assembly {
                          // Div in assembly because solidity adds a zero check despite the unchecked.
                          // The q polynomial is known not to have zeros in the domain.
                          // No scaling required because p is already 2**96 too large.
                          r := sdiv(p, q)
                      }
                      // r is in the range (0, 0.125) * 2**96
                      // Finalization, we need to:
                      // * multiply by the scale factor s = 5.549…
                      // * add ln(2**96 / 10**18)
                      // * add k * ln(2)
                      // * multiply by 10**18 / 2**96 = 5**18 >> 78
                      // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                      r *= 1677202110996718588342820967067443963516166;
                      // add ln(2) * k * 5e18 * 2**192
                      r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                      // add ln(2**96 / 10**18) * 5e18 * 2**192
                      r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                      // base conversion: mul 2**18 / 2**192
                      r >>= 174;
                  }
              }
              /*//////////////////////////////////////////////////////////////
                              LOW LEVEL FIXED POINT OPERATIONS
              //////////////////////////////////////////////////////////////*/
              function mulDivDown(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // Divide z by the denominator.
                      z := div(z, denominator)
                  }
              }
              function mulDivUp(
                  uint256 x,
                  uint256 y,
                  uint256 denominator
              ) internal pure returns (uint256 z) {
                  assembly {
                      // Store x * y in z for now.
                      z := mul(x, y)
                      // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                      if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                          revert(0, 0)
                      }
                      // First, divide z - 1 by the denominator and add 1.
                      // We allow z - 1 to underflow if z is 0, because we multiply the
                      // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                      z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                  }
              }
              function rpow(
                  uint256 x,
                  uint256 n,
                  uint256 scalar
              ) internal pure returns (uint256 z) {
                  assembly {
                      switch x
                      case 0 {
                          switch n
                          case 0 {
                              // 0 ** 0 = 1
                              z := scalar
                          }
                          default {
                              // 0 ** n = 0
                              z := 0
                          }
                      }
                      default {
                          switch mod(n, 2)
                          case 0 {
                              // If n is even, store scalar in z for now.
                              z := scalar
                          }
                          default {
                              // If n is odd, store x in z for now.
                              z := x
                          }
                          // Shifting right by 1 is like dividing by 2.
                          let half := shr(1, scalar)
                          for {
                              // Shift n right by 1 before looping to halve it.
                              n := shr(1, n)
                          } n {
                              // Shift n right by 1 each iteration to halve it.
                              n := shr(1, n)
                          } {
                              // Revert immediately if x ** 2 would overflow.
                              // Equivalent to iszero(eq(div(xx, x), x)) here.
                              if shr(128, x) {
                                  revert(0, 0)
                              }
                              // Store x squared.
                              let xx := mul(x, x)
                              // Round to the nearest number.
                              let xxRound := add(xx, half)
                              // Revert if xx + half overflowed.
                              if lt(xxRound, xx) {
                                  revert(0, 0)
                              }
                              // Set x to scaled xxRound.
                              x := div(xxRound, scalar)
                              // If n is even:
                              if mod(n, 2) {
                                  // Compute z * x.
                                  let zx := mul(z, x)
                                  // If z * x overflowed:
                                  if iszero(eq(div(zx, x), z)) {
                                      // Revert if x is non-zero.
                                      if iszero(iszero(x)) {
                                          revert(0, 0)
                                      }
                                  }
                                  // Round to the nearest number.
                                  let zxRound := add(zx, half)
                                  // Revert if zx + half overflowed.
                                  if lt(zxRound, zx) {
                                      revert(0, 0)
                                  }
                                  // Return properly scaled zxRound.
                                  z := div(zxRound, scalar)
                              }
                          }
                      }
                  }
              }
              /*//////////////////////////////////////////////////////////////
                                  GENERAL NUMBER UTILITIES
              //////////////////////////////////////////////////////////////*/
              function sqrt(uint256 x) internal pure returns (uint256 z) {
                  assembly {
                      let y := x // We start y at x, which will help us make our initial estimate.
                      z := 181 // The "correct" value is 1, but this saves a multiplication later.
                      // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                      // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                      // We check y >= 2^(k + 8) but shift right by k bits
                      // each branch to ensure that if x >= 256, then y >= 256.
                      if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                          y := shr(128, y)
                          z := shl(64, z)
                      }
                      if iszero(lt(y, 0x1000000000000000000)) {
                          y := shr(64, y)
                          z := shl(32, z)
                      }
                      if iszero(lt(y, 0x10000000000)) {
                          y := shr(32, y)
                          z := shl(16, z)
                      }
                      if iszero(lt(y, 0x1000000)) {
                          y := shr(16, y)
                          z := shl(8, z)
                      }
                      // Goal was to get z*z*y within a small factor of x. More iterations could
                      // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                      // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                      // That's not possible if x < 256 but we can just verify those cases exhaustively.
                      // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                      // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                      // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                      // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                      // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                      // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                      // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                      // There is no overflow risk here since y < 2^136 after the first branch above.
                      z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                      // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      z := shr(1, add(z, div(x, z)))
                      // If x+1 is a perfect square, the Babylonian method cycles between
                      // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                      // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                      // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                      // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                      z := sub(z, lt(div(x, z), z))
                  }
              }
              function log2(uint256 x) internal pure returns (uint256 r) {
                  require(x > 0, "UNDEFINED");
                  assembly {
                      r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                      r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                      r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                      r := or(r, shl(4, lt(0xffff, shr(r, x))))
                      r := or(r, shl(3, lt(0xff, shr(r, x))))
                      r := or(r, shl(2, lt(0xf, shr(r, x))))
                      r := or(r, shl(1, lt(0x3, shr(r, x))))
                      r := or(r, lt(0x1, shr(r, x)))
                  }
              }
          }
          

          File 2 of 2: DisputeGameFactory
          // SPDX-License-Identifier: MIT
          pragma solidity 0.8.15;
          // Contracts
          import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
          // Libraries
          import { LibClone } from "@solady/utils/LibClone.sol";
          import { GameType, Claim, GameId, Timestamp, Hash, LibGameId } from "src/dispute/lib/Types.sol";
          import { NoImplementation, IncorrectBondAmount, GameAlreadyExists } from "src/dispute/lib/Errors.sol";
          // Interfaces
          import { ISemver } from "interfaces/universal/ISemver.sol";
          import { IDisputeGame } from "interfaces/dispute/IDisputeGame.sol";
          /// @custom:proxied true
          /// @title DisputeGameFactory
          /// @notice A factory contract for creating `IDisputeGame` contracts. All created dispute games are stored in both a
          ///         mapping and an append only array. The timestamp of the creation time of the dispute game is packed tightly
          ///         into the storage slot with the address of the dispute game to make offchain discoverability of playable
          ///         dispute games easier.
          contract DisputeGameFactory is OwnableUpgradeable, ISemver {
              /// @dev Allows for the creation of clone proxies with immutable arguments.
              using LibClone for address;
              /// @notice Emitted when a new dispute game is created
              /// @param disputeProxy The address of the dispute game proxy
              /// @param gameType The type of the dispute game proxy's implementation
              /// @param rootClaim The root claim of the dispute game
              event DisputeGameCreated(address indexed disputeProxy, GameType indexed gameType, Claim indexed rootClaim);
              /// @notice Emitted when a new game implementation added to the factory
              /// @param impl The implementation contract for the given `GameType`.
              /// @param gameType The type of the DisputeGame.
              event ImplementationSet(address indexed impl, GameType indexed gameType);
              /// @notice Emitted when a game type's initialization bond is updated
              /// @param gameType The type of the DisputeGame.
              /// @param newBond The new bond (in wei) for initializing the game type.
              event InitBondUpdated(GameType indexed gameType, uint256 indexed newBond);
              /// @notice Information about a dispute game found in a `findLatestGames` search.
              struct GameSearchResult {
                  uint256 index;
                  GameId metadata;
                  Timestamp timestamp;
                  Claim rootClaim;
                  bytes extraData;
              }
              /// @notice Semantic version.
              /// @custom:semver 1.0.1
              string public constant version = "1.0.1";
              /// @notice `gameImpls` is a mapping that maps `GameType`s to their respective
              ///         `IDisputeGame` implementations.
              mapping(GameType => IDisputeGame) public gameImpls;
              /// @notice Returns the required bonds for initializing a dispute game of the given type.
              mapping(GameType => uint256) public initBonds;
              /// @notice Mapping of a hash of `gameType || rootClaim || extraData` to the deployed `IDisputeGame` clone (where
              //          `||` denotes concatenation).
              mapping(Hash => GameId) internal _disputeGames;
              /// @notice An append-only array of disputeGames that have been created. Used by offchain game solvers to
              ///         efficiently track dispute games.
              GameId[] internal _disputeGameList;
              /// @notice Constructs a new DisputeGameFactory contract.
              constructor() OwnableUpgradeable() {
                  _disableInitializers();
              }
              /// @notice Initializes the contract.
              /// @param _owner The owner of the contract.
              function initialize(address _owner) external initializer {
                  __Ownable_init();
                  _transferOwnership(_owner);
              }
              /// @notice The total number of dispute games created by this factory.
              /// @return gameCount_ The total number of dispute games created by this factory.
              function gameCount() external view returns (uint256 gameCount_) {
                  gameCount_ = _disputeGameList.length;
              }
              /// @notice `games` queries an internal mapping that maps the hash of
              ///         `gameType ++ rootClaim ++ extraData` to the deployed `DisputeGame` clone.
              /// @dev `++` equates to concatenation.
              /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation
              /// @param _rootClaim The root claim of the DisputeGame.
              /// @param _extraData Any extra data that should be provided to the created dispute game.
              /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
              ///         Returns `address(0)` if nonexistent.
              /// @return timestamp_ The timestamp of the creation of the dispute game.
              function games(
                  GameType _gameType,
                  Claim _rootClaim,
                  bytes calldata _extraData
              )
                  external
                  view
                  returns (IDisputeGame proxy_, Timestamp timestamp_)
              {
                  Hash uuid = getGameUUID(_gameType, _rootClaim, _extraData);
                  (, Timestamp timestamp, address proxy) = _disputeGames[uuid].unpack();
                  (proxy_, timestamp_) = (IDisputeGame(proxy), timestamp);
              }
              /// @notice `gameAtIndex` returns the dispute game contract address and its creation timestamp
              ///          at the given index. Each created dispute game increments the underlying index.
              /// @param _index The index of the dispute game.
              /// @return gameType_ The type of the DisputeGame - used to decide the proxy implementation.
              /// @return timestamp_ The timestamp of the creation of the dispute game.
              /// @return proxy_ The clone of the `DisputeGame` created with the given parameters.
              ///         Returns `address(0)` if nonexistent.
              function gameAtIndex(uint256 _index)
                  external
                  view
                  returns (GameType gameType_, Timestamp timestamp_, IDisputeGame proxy_)
              {
                  (GameType gameType, Timestamp timestamp, address proxy) = _disputeGameList[_index].unpack();
                  (gameType_, timestamp_, proxy_) = (gameType, timestamp, IDisputeGame(proxy));
              }
              /// @notice Creates a new DisputeGame proxy contract.
              /// @param _gameType The type of the DisputeGame - used to decide the proxy implementation.
              /// @param _rootClaim The root claim of the DisputeGame.
              /// @param _extraData Any extra data that should be provided to the created dispute game.
              /// @return proxy_ The address of the created DisputeGame proxy.
              function create(
                  GameType _gameType,
                  Claim _rootClaim,
                  bytes calldata _extraData
              )
                  external
                  payable
                  returns (IDisputeGame proxy_)
              {
                  // Grab the implementation contract for the given `GameType`.
                  IDisputeGame impl = gameImpls[_gameType];
                  // If there is no implementation to clone for the given `GameType`, revert.
                  if (address(impl) == address(0)) revert NoImplementation(_gameType);
                  // If the required initialization bond is not met, revert.
                  if (msg.value != initBonds[_gameType]) revert IncorrectBondAmount();
                  // Get the hash of the parent block.
                  bytes32 parentHash = blockhash(block.number - 1);
                  // Clone the implementation contract and initialize it with the given parameters.
                  //
                  // CWIA Calldata Layout:
                  // ┌──────────────┬────────────────────────────────────┐
                  // │    Bytes     │            Description             │
                  // ├──────────────┼────────────────────────────────────┤
                  // │ [0, 20)      │ Game creator address               │
                  // │ [20, 52)     │ Root claim                         │
                  // │ [52, 84)     │ Parent block hash at creation time │
                  // │ [84, 84 + n) │ Extra data (opaque)                │
                  // └──────────────┴────────────────────────────────────┘
                  proxy_ = IDisputeGame(address(impl).clone(abi.encodePacked(msg.sender, _rootClaim, parentHash, _extraData)));
                  proxy_.initialize{ value: msg.value }();
                  // Compute the unique identifier for the dispute game.
                  Hash uuid = getGameUUID(_gameType, _rootClaim, _extraData);
                  // If a dispute game with the same UUID already exists, revert.
                  if (GameId.unwrap(_disputeGames[uuid]) != bytes32(0)) revert GameAlreadyExists(uuid);
                  // Pack the game ID.
                  GameId id = LibGameId.pack(_gameType, Timestamp.wrap(uint64(block.timestamp)), address(proxy_));
                  // Store the dispute game id in the mapping & emit the `DisputeGameCreated` event.
                  _disputeGames[uuid] = id;
                  _disputeGameList.push(id);
                  emit DisputeGameCreated(address(proxy_), _gameType, _rootClaim);
              }
              /// @notice Returns a unique identifier for the given dispute game parameters.
              /// @dev Hashes the concatenation of `gameType . rootClaim . extraData`
              ///      without expanding memory.
              /// @param _gameType The type of the DisputeGame.
              /// @param _rootClaim The root claim of the DisputeGame.
              /// @param _extraData Any extra data that should be provided to the created dispute game.
              /// @return uuid_ The unique identifier for the given dispute game parameters.
              function getGameUUID(
                  GameType _gameType,
                  Claim _rootClaim,
                  bytes calldata _extraData
              )
                  public
                  pure
                  returns (Hash uuid_)
              {
                  uuid_ = Hash.wrap(keccak256(abi.encode(_gameType, _rootClaim, _extraData)));
              }
              /// @notice Finds the `_n` most recent `GameId`'s of type `_gameType` starting at `_start`. If there are less than
              ///         `_n` games of type `_gameType` starting at `_start`, then the returned array will be shorter than `_n`.
              /// @param _gameType The type of game to find.
              /// @param _start The index to start the reverse search from.
              /// @param _n The number of games to find.
              function findLatestGames(
                  GameType _gameType,
                  uint256 _start,
                  uint256 _n
              )
                  external
                  view
                  returns (GameSearchResult[] memory games_)
              {
                  // If the `_start` index is greater than or equal to the game array length or `_n == 0`, return an empty array.
                  if (_start >= _disputeGameList.length || _n == 0) return games_;
                  // Allocate enough memory for the full array, but start the array's length at `0`. We may not use all of the
                  // memory allocated, but we don't know ahead of time the final size of the array.
                  assembly {
                      games_ := mload(0x40)
                      mstore(0x40, add(games_, add(0x20, shl(0x05, _n))))
                  }
                  // Perform a reverse linear search for the `_n` most recent games of type `_gameType`.
                  for (uint256 i = _start; i >= 0 && i <= _start;) {
                      GameId id = _disputeGameList[i];
                      (GameType gameType, Timestamp timestamp, address proxy) = id.unpack();
                      if (gameType.raw() == _gameType.raw()) {
                          // Increase the size of the `games_` array by 1.
                          // SAFETY: We can safely lazily allocate memory here because we pre-allocated enough memory for the max
                          //         possible size of the array.
                          assembly {
                              mstore(games_, add(mload(games_), 0x01))
                          }
                          bytes memory extraData = IDisputeGame(proxy).extraData();
                          Claim rootClaim = IDisputeGame(proxy).rootClaim();
                          games_[games_.length - 1] = GameSearchResult({
                              index: i,
                              metadata: id,
                              timestamp: timestamp,
                              rootClaim: rootClaim,
                              extraData: extraData
                          });
                          if (games_.length >= _n) break;
                      }
                      unchecked {
                          i--;
                      }
                  }
              }
              /// @notice Sets the implementation contract for a specific `GameType`.
              /// @dev May only be called by the `owner`.
              /// @param _gameType The type of the DisputeGame.
              /// @param _impl The implementation contract for the given `GameType`.
              function setImplementation(GameType _gameType, IDisputeGame _impl) external onlyOwner {
                  gameImpls[_gameType] = _impl;
                  emit ImplementationSet(address(_impl), _gameType);
              }
              /// @notice Sets the bond (in wei) for initializing a game type.
              /// @dev May only be called by the `owner`.
              /// @param _gameType The type of the DisputeGame.
              /// @param _initBond The bond (in wei) for initializing a game type.
              function setInitBond(GameType _gameType, uint256 _initBond) external onlyOwner {
                  initBonds[_gameType] = _initBond;
                  emit InitBondUpdated(_gameType, _initBond);
              }
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
          pragma solidity ^0.8.0;
          import "../utils/ContextUpgradeable.sol";
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Contract module which provides a basic access control mechanism, where
           * there is an account (an owner) that can be granted exclusive access to
           * specific functions.
           *
           * By default, the owner account will be the one that deploys the contract. This
           * can later be changed with {transferOwnership}.
           *
           * This module is used through inheritance. It will make available the modifier
           * `onlyOwner`, which can be applied to your functions to restrict their use to
           * the owner.
           */
          abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
              address private _owner;
              event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
              /**
               * @dev Initializes the contract setting the deployer as the initial owner.
               */
              function __Ownable_init() internal onlyInitializing {
                  __Ownable_init_unchained();
              }
              function __Ownable_init_unchained() internal onlyInitializing {
                  _transferOwnership(_msgSender());
              }
              /**
               * @dev Throws if called by any account other than the owner.
               */
              modifier onlyOwner() {
                  _checkOwner();
                  _;
              }
              /**
               * @dev Returns the address of the current owner.
               */
              function owner() public view virtual returns (address) {
                  return _owner;
              }
              /**
               * @dev Throws if the sender is not the owner.
               */
              function _checkOwner() internal view virtual {
                  require(owner() == _msgSender(), "Ownable: caller is not the owner");
              }
              /**
               * @dev Leaves the contract without owner. It will not be possible to call
               * `onlyOwner` functions anymore. Can only be called by the current owner.
               *
               * NOTE: Renouncing ownership will leave the contract without an owner,
               * thereby removing any functionality that is only available to the owner.
               */
              function renounceOwnership() public virtual onlyOwner {
                  _transferOwnership(address(0));
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Can only be called by the current owner.
               */
              function transferOwnership(address newOwner) public virtual onlyOwner {
                  require(newOwner != address(0), "Ownable: new owner is the zero address");
                  _transferOwnership(newOwner);
              }
              /**
               * @dev Transfers ownership of the contract to a new account (`newOwner`).
               * Internal function without access restriction.
               */
              function _transferOwnership(address newOwner) internal virtual {
                  address oldOwner = _owner;
                  _owner = newOwner;
                  emit OwnershipTransferred(oldOwner, newOwner);
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[49] private __gap;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.4;
          /// @notice Minimal proxy library.
          /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibClone.sol)
          /// @author Minimal proxy by 0age (https://github.com/0age)
          /// @author Clones with immutable args by wighawag, zefram.eth, Saw-mon & Natalie
          /// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args)
          /// @author Minimal ERC1967 proxy by jtriley-eth (https://github.com/jtriley-eth/minimum-viable-proxy)
          ///
          /// @dev Minimal proxy:
          /// Although the sw0nt pattern saves 5 gas over the erc-1167 pattern during runtime,
          /// it is not supported out-of-the-box on Etherscan. Hence, we choose to use the 0age pattern,
          /// which saves 4 gas over the erc-1167 pattern during runtime, and has the smallest bytecode.
          ///
          /// @dev Minimal proxy (PUSH0 variant):
          /// This is a new minimal proxy that uses the PUSH0 opcode introduced during Shanghai.
          /// It is optimized first for minimal runtime gas, then for minimal bytecode.
          /// The PUSH0 clone functions are intentionally postfixed with a jarring "_PUSH0" as
          /// many EVM chains may not support the PUSH0 opcode in the early months after Shanghai.
          /// Please use with caution.
          ///
          /// @dev Clones with immutable args (CWIA):
          /// The implementation of CWIA here implements a `receive()` method that emits the
          /// `ReceiveETH(uint256)` event. This skips the `DELEGATECALL` when there is no calldata,
          /// enabling us to accept hard gas-capped `sends` & `transfers` for maximum backwards
          /// composability. The minimal proxy implementation does not offer this feature.
          ///
          /// @dev Minimal ERC1967 proxy:
          /// An minimal ERC1967 proxy, intended to be upgraded with UUPS.
          /// This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.
          library LibClone {
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                       CUSTOM ERRORS                        */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Unable to deploy the clone.
              error DeploymentFailed();
              /// @dev The salt must start with either the zero address or `by`.
              error SaltDoesNotStartWith();
              /// @dev The ETH transfer has failed.
              error ETHTransferFailed();
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                  MINIMAL PROXY OPERATIONS                  */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Deploys a clone of `implementation`.
              function clone(address implementation) internal returns (address instance) {
                  instance = clone(0, implementation);
              }
              /// @dev Deploys a clone of `implementation`.
              function clone(uint256 value, address implementation) internal returns (address instance) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      /**
                       * --------------------------------------------------------------------------+
                       * CREATION (9 bytes)                                                        |
                       * --------------------------------------------------------------------------|
                       * Opcode     | Mnemonic          | Stack     | Memory                       |
                       * --------------------------------------------------------------------------|
                       * 60 runSize | PUSH1 runSize     | r         |                              |
                       * 3d         | RETURNDATASIZE    | 0 r       |                              |
                       * 81         | DUP2              | r 0 r     |                              |
                       * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
                       * 3d         | RETURNDATASIZE    | 0 o r 0 r |                              |
                       * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
                       * f3         | RETURN            |           | [0..runSize): runtime code   |
                       * --------------------------------------------------------------------------|
                       * RUNTIME (44 bytes)                                                        |
                       * --------------------------------------------------------------------------|
                       * Opcode  | Mnemonic       | Stack                  | Memory                |
                       * --------------------------------------------------------------------------|
                       *                                                                           |
                       * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d      | RETURNDATASIZE | 0                      |                       |
                       * 3d      | RETURNDATASIZE | 0 0                    |                       |
                       * 3d      | RETURNDATASIZE | 0 0 0                  |                       |
                       * 3d      | RETURNDATASIZE | 0 0 0 0                |                       |
                       *                                                                           |
                       * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
                       * 36      | CALLDATASIZE   | cds 0 0 0 0            |                       |
                       * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          |                       |
                       * 3d      | RETURNDATASIZE | 0 0 cds 0 0 0 0        |                       |
                       * 37      | CALLDATACOPY   | 0 0 0 0                | [0..cds): calldata    |
                       *                                                                           |
                       * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
                       * 36      | CALLDATASIZE   | cds 0 0 0 0            | [0..cds): calldata    |
                       * 3d      | RETURNDATASIZE | 0 cds 0 0 0 0          | [0..cds): calldata    |
                       * 73 addr | PUSH20 addr    | addr 0 cds 0 0 0 0     | [0..cds): calldata    |
                       * 5a      | GAS            | gas addr 0 cds 0 0 0 0 | [0..cds): calldata    |
                       * f4      | DELEGATECALL   | success 0 0            | [0..cds): calldata    |
                       *                                                                           |
                       * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
                       * 3d      | RETURNDATASIZE | rds success 0 0        | [0..cds): calldata    |
                       * 3d      | RETURNDATASIZE | rds rds success 0 0    | [0..cds): calldata    |
                       * 93      | SWAP4          | 0 rds success 0 rds    | [0..cds): calldata    |
                       * 80      | DUP1           | 0 0 rds success 0 rds  | [0..cds): calldata    |
                       * 3e      | RETURNDATACOPY | success 0 rds          | [0..rds): returndata  |
                       *                                                                           |
                       * 60 0x2a | PUSH1 0x2a     | 0x2a success 0 rds     | [0..rds): returndata  |
                       * 57      | JUMPI          | 0 rds                  | [0..rds): returndata  |
                       *                                                                           |
                       * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * fd      | REVERT         |                        | [0..rds): returndata  |
                       *                                                                           |
                       * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 5b      | JUMPDEST       | 0 rds                  | [0..rds): returndata  |
                       * f3      | RETURN         |                        | [0..rds): returndata  |
                       * --------------------------------------------------------------------------+
                       */
                      mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                      mstore(0x14, implementation)
                      mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                      instance := create(value, 0x0c, 0x35)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Deploys a deterministic clone of `implementation` with `salt`.
              function cloneDeterministic(address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  instance = cloneDeterministic(0, implementation, salt);
              }
              /// @dev Deploys a deterministic clone of `implementation` with `salt`.
              function cloneDeterministic(uint256 value, address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                      mstore(0x14, implementation)
                      mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                      instance := create2(value, 0x0c, 0x35, salt)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Returns the initialization code hash of the clone of `implementation`.
              /// Used for mining vanity addresses with create2crunch.
              function initCodeHash(address implementation) internal pure returns (bytes32 hash) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x21, 0x5af43d3d93803e602a57fd5bf3)
                      mstore(0x14, implementation)
                      mstore(0x00, 0x602c3d8160093d39f33d3d3d3d363d3d37363d73)
                      hash := keccak256(0x0c, 0x35)
                      mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Returns the address of the deterministic clone of `implementation`,
              /// with `salt` by `deployer`.
              /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
              function predictDeterministicAddress(address implementation, bytes32 salt, address deployer)
                  internal
                  pure
                  returns (address predicted)
              {
                  bytes32 hash = initCodeHash(implementation);
                  predicted = predictDeterministicAddress(hash, salt, deployer);
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*          MINIMAL PROXY OPERATIONS (PUSH0 VARIANT)          */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Deploys a PUSH0 clone of `implementation`.
              function clone_PUSH0(address implementation) internal returns (address instance) {
                  instance = clone_PUSH0(0, implementation);
              }
              /// @dev Deploys a PUSH0 clone of `implementation`.
              function clone_PUSH0(uint256 value, address implementation)
                  internal
                  returns (address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      /**
                       * --------------------------------------------------------------------------+
                       * CREATION (9 bytes)                                                        |
                       * --------------------------------------------------------------------------|
                       * Opcode     | Mnemonic          | Stack     | Memory                       |
                       * --------------------------------------------------------------------------|
                       * 60 runSize | PUSH1 runSize     | r         |                              |
                       * 5f         | PUSH0             | 0 r       |                              |
                       * 81         | DUP2              | r 0 r     |                              |
                       * 60 offset  | PUSH1 offset      | o r 0 r   |                              |
                       * 5f         | PUSH0             | 0 o r 0 r |                              |
                       * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code   |
                       * f3         | RETURN            |           | [0..runSize): runtime code   |
                       * --------------------------------------------------------------------------|
                       * RUNTIME (45 bytes)                                                        |
                       * --------------------------------------------------------------------------|
                       * Opcode  | Mnemonic       | Stack                  | Memory                |
                       * --------------------------------------------------------------------------|
                       *                                                                           |
                       * ::: keep some values in stack ::::::::::::::::::::::::::::::::::::::::::: |
                       * 5f      | PUSH0          | 0                      |                       |
                       * 5f      | PUSH0          | 0 0                    |                       |
                       *                                                                           |
                       * ::: copy calldata to memory ::::::::::::::::::::::::::::::::::::::::::::: |
                       * 36      | CALLDATASIZE   | cds 0 0                |                       |
                       * 5f      | PUSH0          | 0 cds 0 0              |                       |
                       * 5f      | PUSH0          | 0 0 cds 0 0            |                       |
                       * 37      | CALLDATACOPY   | 0 0                    | [0..cds): calldata    |
                       *                                                                           |
                       * ::: delegate call to the implementation contract :::::::::::::::::::::::: |
                       * 36      | CALLDATASIZE   | cds 0 0                | [0..cds): calldata    |
                       * 5f      | PUSH0          | 0 cds 0 0              | [0..cds): calldata    |
                       * 73 addr | PUSH20 addr    | addr 0 cds 0 0         | [0..cds): calldata    |
                       * 5a      | GAS            | gas addr 0 cds 0 0     | [0..cds): calldata    |
                       * f4      | DELEGATECALL   | success                | [0..cds): calldata    |
                       *                                                                           |
                       * ::: copy return data to memory :::::::::::::::::::::::::::::::::::::::::: |
                       * 3d      | RETURNDATASIZE | rds success            | [0..cds): calldata    |
                       * 5f      | PUSH0          | 0 rds success          | [0..cds): calldata    |
                       * 5f      | PUSH0          | 0 0 rds success        | [0..cds): calldata    |
                       * 3e      | RETURNDATACOPY | success                | [0..rds): returndata  |
                       *                                                                           |
                       * 60 0x29 | PUSH1 0x29     | 0x29 success           | [0..rds): returndata  |
                       * 57      | JUMPI          |                        | [0..rds): returndata  |
                       *                                                                           |
                       * ::: revert :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
                       * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
                       * fd      | REVERT         |                        | [0..rds): returndata  |
                       *                                                                           |
                       * ::: return :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 5b      | JUMPDEST       |                        | [0..rds): returndata  |
                       * 3d      | RETURNDATASIZE | rds                    | [0..rds): returndata  |
                       * 5f      | PUSH0          | 0 rds                  | [0..rds): returndata  |
                       * f3      | RETURN         |                        | [0..rds): returndata  |
                       * --------------------------------------------------------------------------+
                       */
                      mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                      mstore(0x14, implementation) // 20
                      mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                      instance := create(value, 0x0e, 0x36)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
              function cloneDeterministic_PUSH0(address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  instance = cloneDeterministic_PUSH0(0, implementation, salt);
              }
              /// @dev Deploys a deterministic PUSH0 clone of `implementation` with `salt`.
              function cloneDeterministic_PUSH0(uint256 value, address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                      mstore(0x14, implementation) // 20
                      mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                      instance := create2(value, 0x0e, 0x36, salt)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Returns the initialization code hash of the PUSH0 clone of `implementation`.
              /// Used for mining vanity addresses with create2crunch.
              function initCodeHash_PUSH0(address implementation) internal pure returns (bytes32 hash) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      mstore(0x24, 0x5af43d5f5f3e6029573d5ffd5b3d5ff3) // 16
                      mstore(0x14, implementation) // 20
                      mstore(0x00, 0x602d5f8160095f39f35f5f365f5f37365f73) // 9 + 9
                      hash := keccak256(0x0e, 0x36)
                      mstore(0x24, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Returns the address of the deterministic PUSH0 clone of `implementation`,
              /// with `salt` by `deployer`.
              /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
              function predictDeterministicAddress_PUSH0(
                  address implementation,
                  bytes32 salt,
                  address deployer
              ) internal pure returns (address predicted) {
                  bytes32 hash = initCodeHash_PUSH0(implementation);
                  predicted = predictDeterministicAddress(hash, salt, deployer);
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*           CLONES WITH IMMUTABLE ARGS OPERATIONS            */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              // Note: This implementation of CWIA differs from the original implementation.
              // If the calldata is empty, it will emit a `ReceiveETH(uint256)` event and skip the `DELEGATECALL`.
              /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `data`.
              function clone(address implementation, bytes memory data) internal returns (address instance) {
                  instance = clone(0, implementation, data);
              }
              /// @dev Deploys a clone of `implementation` with immutable arguments encoded in `data`.
              function clone(uint256 value, address implementation, bytes memory data)
                  internal
                  returns (address instance)
              {
                  assembly {
                      // Compute the boundaries of the data and cache the memory slots around it.
                      let mBefore3 := mload(sub(data, 0x60))
                      let mBefore2 := mload(sub(data, 0x40))
                      let mBefore1 := mload(sub(data, 0x20))
                      let dataLength := mload(data)
                      let dataEnd := add(add(data, 0x20), dataLength)
                      let mAfter1 := mload(dataEnd)
                      // +2 bytes for telling how much data there is appended to the call.
                      let extraLength := add(dataLength, 2)
                      // The `creationSize` is `extraLength + 108`
                      // The `runSize` is `creationSize - 10`.
                      /**
                       * ---------------------------------------------------------------------------------------------------+
                       * CREATION (10 bytes)                                                                                |
                       * ---------------------------------------------------------------------------------------------------|
                       * Opcode     | Mnemonic          | Stack     | Memory                                                |
                       * ---------------------------------------------------------------------------------------------------|
                       * 61 runSize | PUSH2 runSize     | r         |                                                       |
                       * 3d         | RETURNDATASIZE    | 0 r       |                                                       |
                       * 81         | DUP2              | r 0 r     |                                                       |
                       * 60 offset  | PUSH1 offset      | o r 0 r   |                                                       |
                       * 3d         | RETURNDATASIZE    | 0 o r 0 r |                                                       |
                       * 39         | CODECOPY          | 0 r       | [0..runSize): runtime code                            |
                       * f3         | RETURN            |           | [0..runSize): runtime code                            |
                       * ---------------------------------------------------------------------------------------------------|
                       * RUNTIME (98 bytes + extraLength)                                                                   |
                       * ---------------------------------------------------------------------------------------------------|
                       * Opcode   | Mnemonic       | Stack                    | Memory                                      |
                       * ---------------------------------------------------------------------------------------------------|
                       *                                                                                                    |
                       * ::: if no calldata, emit event & return w/o `DELEGATECALL` ::::::::::::::::::::::::::::::::::::::: |
                       * 36       | CALLDATASIZE   | cds                      |                                             |
                       * 60 0x2c  | PUSH1 0x2c     | 0x2c cds                 |                                             |
                       * 57       | JUMPI          |                          |                                             |
                       * 34       | CALLVALUE      | cv                       |                                             |
                       * 3d       | RETURNDATASIZE | 0 cv                     |                                             |
                       * 52       | MSTORE         |                          | [0..0x20): callvalue                        |
                       * 7f sig   | PUSH32 0x9e..  | sig                      | [0..0x20): callvalue                        |
                       * 59       | MSIZE          | 0x20 sig                 | [0..0x20): callvalue                        |
                       * 3d       | RETURNDATASIZE | 0 0x20 sig               | [0..0x20): callvalue                        |
                       * a1       | LOG1           |                          | [0..0x20): callvalue                        |
                       * 00       | STOP           |                          | [0..0x20): callvalue                        |
                       * 5b       | JUMPDEST       |                          |                                             |
                       *                                                                                                    |
                       * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 36       | CALLDATASIZE   | cds                      |                                             |
                       * 3d       | RETURNDATASIZE | 0 cds                    |                                             |
                       * 3d       | RETURNDATASIZE | 0 0 cds                  |                                             |
                       * 37       | CALLDATACOPY   |                          | [0..cds): calldata                          |
                       *                                                                                                    |
                       * ::: keep some values in stack :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d       | RETURNDATASIZE | 0                        | [0..cds): calldata                          |
                       * 3d       | RETURNDATASIZE | 0 0                      | [0..cds): calldata                          |
                       * 3d       | RETURNDATASIZE | 0 0 0                    | [0..cds): calldata                          |
                       * 3d       | RETURNDATASIZE | 0 0 0 0                  | [0..cds): calldata                          |
                       * 61 extra | PUSH2 extra    | e 0 0 0 0                | [0..cds): calldata                          |
                       *                                                                                                    |
                       * ::: copy extra data to memory :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 80       | DUP1           | e e 0 0 0 0              | [0..cds): calldata                          |
                       * 60 0x62  | PUSH1 0x62     | 0x62 e e 0 0 0 0         | [0..cds): calldata                          |
                       * 36       | CALLDATASIZE   | cds 0x62 e e 0 0 0 0     | [0..cds): calldata                          |
                       * 39       | CODECOPY       | e 0 0 0 0                | [0..cds): calldata, [cds..cds+e): extraData |
                       *                                                                                                    |
                       * ::: delegate call to the implementation contract ::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 36       | CALLDATASIZE   | cds e 0 0 0 0            | [0..cds): calldata, [cds..cds+e): extraData |
                       * 01       | ADD            | cds+e 0 0 0 0            | [0..cds): calldata, [cds..cds+e): extraData |
                       * 3d       | RETURNDATASIZE | 0 cds+e 0 0 0 0          | [0..cds): calldata, [cds..cds+e): extraData |
                       * 73 addr  | PUSH20 addr    | addr 0 cds+e 0 0 0 0     | [0..cds): calldata, [cds..cds+e): extraData |
                       * 5a       | GAS            | gas addr 0 cds+e 0 0 0 0 | [0..cds): calldata, [cds..cds+e): extraData |
                       * f4       | DELEGATECALL   | success 0 0              | [0..cds): calldata, [cds..cds+e): extraData |
                       *                                                                                                    |
                       * ::: copy return data to memory ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d       | RETURNDATASIZE | rds success 0 0          | [0..cds): calldata, [cds..cds+e): extraData |
                       * 3d       | RETURNDATASIZE | rds rds success 0 0      | [0..cds): calldata, [cds..cds+e): extraData |
                       * 93       | SWAP4          | 0 rds success 0 rds      | [0..cds): calldata, [cds..cds+e): extraData |
                       * 80       | DUP1           | 0 0 rds success 0 rds    | [0..cds): calldata, [cds..cds+e): extraData |
                       * 3e       | RETURNDATACOPY | success 0 rds            | [0..rds): returndata                        |
                       *                                                                                                    |
                       * 60 0x60  | PUSH1 0x60     | 0x60 success 0 rds       | [0..rds): returndata                        |
                       * 57       | JUMPI          | 0 rds                    | [0..rds): returndata                        |
                       *                                                                                                    |
                       * ::: revert ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * fd       | REVERT         |                          | [0..rds): returndata                        |
                       *                                                                                                    |
                       * ::: return ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 5b       | JUMPDEST       | 0 rds                    | [0..rds): returndata                        |
                       * f3       | RETURN         |                          | [0..rds): returndata                        |
                       * ---------------------------------------------------------------------------------------------------+
                       */
                      mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                      mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                      // Write the rest of the bytecode.
                      mstore(
                          sub(data, 0x21),
                          or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                      )
                      // `keccak256("ReceiveETH(uint256)")`
                      mstore(
                          sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                      )
                      mstore(
                          // Do a out-of-gas revert if `extraLength` is too big. 0xffff - 0x62 + 0x01 = 0xff9e.
                          // The actual EVM limit may be smaller and may change over time.
                          sub(data, add(0x59, lt(extraLength, 0xff9e))),
                          or(shl(0x78, add(extraLength, 0x62)), 0xfd6100003d81600a3d39f336602c57343d527f)
                      )
                      mstore(dataEnd, shl(0xf0, extraLength))
                      instance := create(value, sub(data, 0x4c), add(extraLength, 0x6c))
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      // Restore the overwritten memory surrounding `data`.
                      mstore(dataEnd, mAfter1)
                      mstore(data, dataLength)
                      mstore(sub(data, 0x20), mBefore1)
                      mstore(sub(data, 0x40), mBefore2)
                      mstore(sub(data, 0x60), mBefore3)
                  }
              }
              /// @dev Deploys a deterministic clone of `implementation`
              /// with immutable arguments encoded in `data` and `salt`.
              function cloneDeterministic(address implementation, bytes memory data, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  instance = cloneDeterministic(0, implementation, data, salt);
              }
              /// @dev Deploys a deterministic clone of `implementation`
              /// with immutable arguments encoded in `data` and `salt`.
              function cloneDeterministic(
                  uint256 value,
                  address implementation,
                  bytes memory data,
                  bytes32 salt
              ) internal returns (address instance) {
                  assembly {
                      // Compute the boundaries of the data and cache the memory slots around it.
                      let mBefore3 := mload(sub(data, 0x60))
                      let mBefore2 := mload(sub(data, 0x40))
                      let mBefore1 := mload(sub(data, 0x20))
                      let dataLength := mload(data)
                      let dataEnd := add(add(data, 0x20), dataLength)
                      let mAfter1 := mload(dataEnd)
                      // +2 bytes for telling how much data there is appended to the call.
                      let extraLength := add(dataLength, 2)
                      mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                      mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                      // Write the rest of the bytecode.
                      mstore(
                          sub(data, 0x21),
                          or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                      )
                      // `keccak256("ReceiveETH(uint256)")`
                      mstore(
                          sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                      )
                      mstore(
                          // Do a out-of-gas revert if `extraLength` is too big. 0xffff - 0x62 + 0x01 = 0xff9e.
                          // The actual EVM limit may be smaller and may change over time.
                          sub(data, add(0x59, lt(extraLength, 0xff9e))),
                          or(shl(0x78, add(extraLength, 0x62)), 0xfd6100003d81600a3d39f336602c57343d527f)
                      )
                      mstore(dataEnd, shl(0xf0, extraLength))
                      instance := create2(value, sub(data, 0x4c), add(extraLength, 0x6c), salt)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      // Restore the overwritten memory surrounding `data`.
                      mstore(dataEnd, mAfter1)
                      mstore(data, dataLength)
                      mstore(sub(data, 0x20), mBefore1)
                      mstore(sub(data, 0x40), mBefore2)
                      mstore(sub(data, 0x60), mBefore3)
                  }
              }
              /// @dev Returns the initialization code hash of the clone of `implementation`
              /// using immutable arguments encoded in `data`.
              /// Used for mining vanity addresses with create2crunch.
              function initCodeHash(address implementation, bytes memory data)
                  internal
                  pure
                  returns (bytes32 hash)
              {
                  assembly {
                      // Compute the boundaries of the data and cache the memory slots around it.
                      let mBefore3 := mload(sub(data, 0x60))
                      let mBefore2 := mload(sub(data, 0x40))
                      let mBefore1 := mload(sub(data, 0x20))
                      let dataLength := mload(data)
                      let dataEnd := add(add(data, 0x20), dataLength)
                      let mAfter1 := mload(dataEnd)
                      // Do a out-of-gas revert if `dataLength` is too big. 0xffff - 0x02 - 0x62 = 0xff9b.
                      // The actual EVM limit may be smaller and may change over time.
                      returndatacopy(returndatasize(), returndatasize(), gt(dataLength, 0xff9b))
                      // +2 bytes for telling how much data there is appended to the call.
                      let extraLength := add(dataLength, 2)
                      mstore(data, 0x5af43d3d93803e606057fd5bf3) // Write the bytecode before the data.
                      mstore(sub(data, 0x0d), implementation) // Write the address of the implementation.
                      // Write the rest of the bytecode.
                      mstore(
                          sub(data, 0x21),
                          or(shl(0x48, extraLength), 0x593da1005b363d3d373d3d3d3d610000806062363936013d73)
                      )
                      // `keccak256("ReceiveETH(uint256)")`
                      mstore(
                          sub(data, 0x3a), 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
                      )
                      mstore(
                          sub(data, 0x5a),
                          or(shl(0x78, add(extraLength, 0x62)), 0x6100003d81600a3d39f336602c57343d527f)
                      )
                      mstore(dataEnd, shl(0xf0, extraLength))
                      hash := keccak256(sub(data, 0x4c), add(extraLength, 0x6c))
                      // Restore the overwritten memory surrounding `data`.
                      mstore(dataEnd, mAfter1)
                      mstore(data, dataLength)
                      mstore(sub(data, 0x20), mBefore1)
                      mstore(sub(data, 0x40), mBefore2)
                      mstore(sub(data, 0x60), mBefore3)
                  }
              }
              /// @dev Returns the address of the deterministic clone of
              /// `implementation` using immutable arguments encoded in `data`, with `salt`, by `deployer`.
              /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
              function predictDeterministicAddress(
                  address implementation,
                  bytes memory data,
                  bytes32 salt,
                  address deployer
              ) internal pure returns (address predicted) {
                  bytes32 hash = initCodeHash(implementation, data);
                  predicted = predictDeterministicAddress(hash, salt, deployer);
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*              MINIMAL ERC1967 PROXY OPERATIONS              */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              // Note: The ERC1967 proxy here is intended to be upgraded with UUPS.
              // This is NOT the same as ERC1967Factory's transparent proxy, which includes admin logic.
              /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
              function deployERC1967(address implementation) internal returns (address instance) {
                  instance = deployERC1967(0, implementation);
              }
              /// @dev Deploys a minimal ERC1967 proxy with `implementation`.
              function deployERC1967(uint256 value, address implementation)
                  internal
                  returns (address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      /**
                       * ---------------------------------------------------------------------------------+
                       * CREATION (34 bytes)                                                              |
                       * ---------------------------------------------------------------------------------|
                       * Opcode     | Mnemonic       | Stack            | Memory                          |
                       * ---------------------------------------------------------------------------------|
                       * 60 runSize | PUSH1 runSize  | r                |                                 |
                       * 3d         | RETURNDATASIZE | 0 r              |                                 |
                       * 81         | DUP2           | r 0 r            |                                 |
                       * 60 offset  | PUSH1 offset   | o r 0 r          |                                 |
                       * 3d         | RETURNDATASIZE | 0 o r 0 r        |                                 |
                       * 39         | CODECOPY       | 0 r              | [0..runSize): runtime code      |
                       * 73 impl    | PUSH20 impl    | impl 0 r         | [0..runSize): runtime code      |
                       * 60 slotPos | PUSH1 slotPos  | slotPos impl 0 r | [0..runSize): runtime code      |
                       * 51         | MLOAD          | slot impl 0 r    | [0..runSize): runtime code      |
                       * 55         | SSTORE         | 0 r              | [0..runSize): runtime code      |
                       * f3         | RETURN         |                  | [0..runSize): runtime code      |
                       * ---------------------------------------------------------------------------------|
                       * RUNTIME (62 bytes)                                                               |
                       * ---------------------------------------------------------------------------------|
                       * Opcode     | Mnemonic       | Stack            | Memory                          |
                       * ---------------------------------------------------------------------------------|
                       *                                                                                  |
                       * ::: copy calldata to memory :::::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 36         | CALLDATASIZE   | cds              |                                 |
                       * 3d         | RETURNDATASIZE | 0 cds            |                                 |
                       * 3d         | RETURNDATASIZE | 0 0 cds          |                                 |
                       * 37         | CALLDATACOPY   |                  | [0..calldatasize): calldata     |
                       *                                                                                  |
                       * ::: delegatecall to implementation ::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d         | RETURNDATASIZE | 0                |                                 |
                       * 3d         | RETURNDATASIZE | 0 0              |                                 |
                       * 36         | CALLDATASIZE   | cds 0 0          | [0..calldatasize): calldata     |
                       * 3d         | RETURNDATASIZE | 0 cds 0 0        | [0..calldatasize): calldata     |
                       * 7f slot    | PUSH32 slot    | s 0 cds 0 0      | [0..calldatasize): calldata     |
                       * 54         | SLOAD          | i 0 cds 0 0      | [0..calldatasize): calldata     |
                       * 5a         | GAS            | g i 0 cds 0 0    | [0..calldatasize): calldata     |
                       * f4         | DELEGATECALL   | succ             | [0..calldatasize): calldata     |
                       *                                                                                  |
                       * ::: copy returndata to memory :::::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d         | RETURNDATASIZE | rds succ         | [0..calldatasize): calldata     |
                       * 60 0x00    | PUSH1 0x00     | 0 rds succ       | [0..calldatasize): calldata     |
                       * 80         | DUP1           | 0 0 rds succ     | [0..calldatasize): calldata     |
                       * 3e         | RETURNDATACOPY | succ             | [0..returndatasize): returndata |
                       *                                                                                  |
                       * ::: branch on delegatecall status :::::::::::::::::::::::::::::::::::::::::::::: |
                       * 60 0x38    | PUSH1 0x38     | dest succ        | [0..returndatasize): returndata |
                       * 57         | JUMPI          |                  | [0..returndatasize): returndata |
                       *                                                                                  |
                       * ::: delegatecall failed, revert :::::::::::::::::::::::::::::::::::::::::::::::: |
                       * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
                       * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
                       * fd         | REVERT         |                  | [0..returndatasize): returndata |
                       *                                                                                  |
                       * ::: delegatecall succeeded, return ::::::::::::::::::::::::::::::::::::::::::::: |
                       * 5b         | JUMPDEST       |                  | [0..returndatasize): returndata |
                       * 3d         | RETURNDATASIZE | rds              | [0..returndatasize): returndata |
                       * 60 0x00    | PUSH1 0x00     | 0 rds            | [0..returndatasize): returndata |
                       * f3         | RETURN         |                  | [0..returndatasize): returndata |
                       * ---------------------------------------------------------------------------------+
                       */
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                      mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                      mstore(0x20, 0x6009)
                      mstore(0x1e, implementation)
                      mstore(0x0a, 0x603d3d8160223d3973)
                      instance := create(value, 0x21, 0x5f)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x40, m) // Restore the free memory pointer.
                      mstore(0x60, 0) // Restore the zero slot.
                  }
              }
              /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
              function deployDeterministicERC1967(address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  instance = deployDeterministicERC1967(0, implementation, salt);
              }
              /// @dev Deploys a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
              function deployDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
                  internal
                  returns (address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                      mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                      mstore(0x20, 0x6009)
                      mstore(0x1e, implementation)
                      mstore(0x0a, 0x603d3d8160223d3973)
                      instance := create2(value, 0x21, 0x5f, salt)
                      if iszero(instance) {
                          mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                          revert(0x1c, 0x04)
                      }
                      mstore(0x40, m) // Restore the free memory pointer.
                      mstore(0x60, 0) // Restore the zero slot.
                  }
              }
              /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
              /// Note: This method is intended for use in ERC4337 factories,
              /// which are expected to NOT revert if the proxy is already deployed.
              function createDeterministicERC1967(address implementation, bytes32 salt)
                  internal
                  returns (bool alreadyDeployed, address instance)
              {
                  return createDeterministicERC1967(0, implementation, salt);
              }
              /// @dev Creates a deterministic minimal ERC1967 proxy with `implementation` and `salt`.
              /// Note: This method is intended for use in ERC4337 factories,
              /// which are expected to NOT revert if the proxy is already deployed.
              function createDeterministicERC1967(uint256 value, address implementation, bytes32 salt)
                  internal
                  returns (bool alreadyDeployed, address instance)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                      mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                      mstore(0x20, 0x6009)
                      mstore(0x1e, implementation)
                      mstore(0x0a, 0x603d3d8160223d3973)
                      // Compute and store the bytecode hash.
                      mstore(add(m, 0x35), keccak256(0x21, 0x5f))
                      mstore(m, shl(88, address()))
                      mstore8(m, 0xff) // Write the prefix.
                      mstore(add(m, 0x15), salt)
                      instance := keccak256(m, 0x55)
                      for {} 1 {} {
                          if iszero(extcodesize(instance)) {
                              instance := create2(value, 0x21, 0x5f, salt)
                              if iszero(instance) {
                                  mstore(0x00, 0x30116425) // `DeploymentFailed()`.
                                  revert(0x1c, 0x04)
                              }
                              break
                          }
                          alreadyDeployed := 1
                          if iszero(value) { break }
                          if iszero(call(gas(), instance, value, codesize(), 0x00, codesize(), 0x00)) {
                              mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                              revert(0x1c, 0x04)
                          }
                          break
                      }
                      mstore(0x40, m) // Restore the free memory pointer.
                      mstore(0x60, 0) // Restore the zero slot.
                  }
              }
              /// @dev Returns the initialization code hash of the clone of `implementation`
              /// using immutable arguments encoded in `data`.
              /// Used for mining vanity addresses with create2crunch.
              function initCodeHashERC1967(address implementation) internal pure returns (bytes32 hash) {
                  /// @solidity memory-safe-assembly
                  assembly {
                      let m := mload(0x40) // Cache the free memory pointer.
                      mstore(0x60, 0xcc3735a920a3ca505d382bbc545af43d6000803e6038573d6000fd5b3d6000f3)
                      mstore(0x40, 0x5155f3363d3d373d3d363d7f360894a13ba1a3210667c828492db98dca3e2076)
                      mstore(0x20, 0x6009)
                      mstore(0x1e, implementation)
                      mstore(0x0a, 0x603d3d8160223d3973)
                      hash := keccak256(0x21, 0x5f)
                      mstore(0x40, m) // Restore the free memory pointer.
                      mstore(0x60, 0) // Restore the zero slot.
                  }
              }
              /// @dev Returns the address of the deterministic clone of
              /// `implementation` using immutable arguments encoded in `data`, with `salt`, by `deployer`.
              /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
              function predictDeterministicAddressERC1967(
                  address implementation,
                  bytes32 salt,
                  address deployer
              ) internal pure returns (address predicted) {
                  bytes32 hash = initCodeHashERC1967(implementation);
                  predicted = predictDeterministicAddress(hash, salt, deployer);
              }
              /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
              /*                      OTHER OPERATIONS                      */
              /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
              /// @dev Returns the address when a contract with initialization code hash,
              /// `hash`, is deployed with `salt`, by `deployer`.
              /// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
              function predictDeterministicAddress(bytes32 hash, bytes32 salt, address deployer)
                  internal
                  pure
                  returns (address predicted)
              {
                  /// @solidity memory-safe-assembly
                  assembly {
                      // Compute and store the bytecode hash.
                      mstore8(0x00, 0xff) // Write the prefix.
                      mstore(0x35, hash)
                      mstore(0x01, shl(96, deployer))
                      mstore(0x15, salt)
                      predicted := keccak256(0x00, 0x55)
                      mstore(0x35, 0) // Restore the overwritten part of the free memory pointer.
                  }
              }
              /// @dev Requires that `salt` starts with either the zero address or `by`.
              function checkStartsWith(bytes32 salt, address by) internal pure {
                  /// @solidity memory-safe-assembly
                  assembly {
                      // If the salt does not start with the zero address or `by`.
                      if iszero(or(iszero(shr(96, salt)), eq(shr(96, shl(96, by)), shr(96, salt)))) {
                          mstore(0x00, 0x0c4549ef) // `SaltDoesNotStartWith()`.
                          revert(0x1c, 0x04)
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.15;
          // Libraries
          import {
              Position,
              Hash,
              GameType,
              VMStatus,
              Timestamp,
              Duration,
              Clock,
              GameId,
              Claim,
              LibGameId,
              LibClock
          } from "src/dispute/lib/LibUDT.sol";
          /// @notice The current status of the dispute game.
          enum GameStatus {
              // The game is currently in progress, and has not been resolved.
              IN_PROGRESS,
              // The game has concluded, and the `rootClaim` was challenged successfully.
              CHALLENGER_WINS,
              // The game has concluded, and the `rootClaim` could not be contested.
              DEFENDER_WINS
          }
          /// @notice The game's bond distribution type. Games are expected to start in the `UNDECIDED`
          ///         state, and then choose either `NORMAL` or `REFUND`.
          enum BondDistributionMode {
              // Bond distribution strategy has not been chosen.
              UNDECIDED,
              // Bonds should be distributed as normal.
              NORMAL,
              // Bonds should be refunded to claimants.
              REFUND
          }
          /// @notice Represents an L2 output root and the L2 block number at which it was generated.
          /// @custom:field root The output root.
          /// @custom:field l2BlockNumber The L2 block number at which the output root was generated.
          struct OutputRoot {
              Hash root;
              uint256 l2BlockNumber;
          }
          /// @title GameTypes
          /// @notice A library that defines the IDs of games that can be played.
          library GameTypes {
              /// @dev A dispute game type the uses the cannon vm.
              GameType internal constant CANNON = GameType.wrap(0);
              /// @dev A permissioned dispute game type that uses the cannon vm.
              GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
              /// @notice A dispute game type that uses the asterisc vm.
              GameType internal constant ASTERISC = GameType.wrap(2);
              /// @notice A dispute game type that uses the asterisc vm with Kona.
              GameType internal constant ASTERISC_KONA = GameType.wrap(3);
              /// @notice A dispute game type that uses OP Succinct
              GameType internal constant OP_SUCCINCT = GameType.wrap(6);
              /// @notice A dispute game type with short game duration for testing withdrawals.
              ///         Not intended for production use.
              GameType internal constant FAST = GameType.wrap(254);
              /// @notice A dispute game type that uses an alphabet vm.
              ///         Not intended for production use.
              GameType internal constant ALPHABET = GameType.wrap(255);
              /// @notice A dispute game type that uses RISC Zero's Kailua
              GameType internal constant KAILUA = GameType.wrap(1337);
          }
          /// @title VMStatuses
          /// @notice Named type aliases for the various valid VM status bytes.
          library VMStatuses {
              /// @notice The VM has executed successfully and the outcome is valid.
              VMStatus internal constant VALID = VMStatus.wrap(0);
              /// @notice The VM has executed successfully and the outcome is invalid.
              VMStatus internal constant INVALID = VMStatus.wrap(1);
              /// @notice The VM has paniced.
              VMStatus internal constant PANIC = VMStatus.wrap(2);
              /// @notice The VM execution is still in progress.
              VMStatus internal constant UNFINISHED = VMStatus.wrap(3);
          }
          /// @title LocalPreimageKey
          /// @notice Named type aliases for local `PreimageOracle` key identifiers.
          library LocalPreimageKey {
              /// @notice The identifier for the L1 head hash.
              uint256 internal constant L1_HEAD_HASH = 0x01;
              /// @notice The identifier for the starting output root.
              uint256 internal constant STARTING_OUTPUT_ROOT = 0x02;
              /// @notice The identifier for the disputed output root.
              uint256 internal constant DISPUTED_OUTPUT_ROOT = 0x03;
              /// @notice The identifier for the disputed L2 block number.
              uint256 internal constant DISPUTED_L2_BLOCK_NUMBER = 0x04;
              /// @notice The identifier for the chain ID.
              uint256 internal constant CHAIN_ID = 0x05;
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.15;
          // Libraries
          import { GameType, Hash, Claim } from "src/dispute/lib/LibUDT.sol";
          ////////////////////////////////////////////////////////////////
          //                `DisputeGameFactory` Errors                 //
          ////////////////////////////////////////////////////////////////
          /// @notice Thrown when a dispute game is attempted to be created with an unsupported game type.
          /// @param gameType The unsupported game type.
          error NoImplementation(GameType gameType);
          /// @notice Thrown when a dispute game that already exists is attempted to be created.
          /// @param uuid The UUID of the dispute game that already exists.
          error GameAlreadyExists(Hash uuid);
          /// @notice Thrown when the root claim has an unexpected VM status.
          ///         Some games can only start with a root-claim with a specific status.
          /// @param rootClaim is the claim that was unexpected.
          error UnexpectedRootClaim(Claim rootClaim);
          ////////////////////////////////////////////////////////////////
          //                 `FaultDisputeGame` Errors                  //
          ////////////////////////////////////////////////////////////////
          /// @notice Thrown when a dispute game has already been initialized.
          error AlreadyInitialized();
          /// @notice Thrown when a supplied bond is not equal to the required bond amount to cover the cost of the interaction.
          error IncorrectBondAmount();
          /// @notice Thrown when a credit claim is attempted for a value of 0.
          error NoCreditToClaim();
          /// @notice Thrown when the transfer of credit to a recipient account reverts.
          error BondTransferFailed();
          /// @notice Thrown when the `extraData` passed to the CWIA proxy is of improper length, or contains invalid information.
          error BadExtraData();
          /// @notice Thrown when a defense against the root claim is attempted.
          error CannotDefendRootClaim();
          /// @notice Thrown when a claim is attempting to be made that already exists.
          error ClaimAlreadyExists();
          /// @notice Thrown when a disputed claim does not match its index in the game.
          error InvalidDisputedClaimIndex();
          /// @notice Thrown when an action that requires the game to be `IN_PROGRESS` is invoked when
          ///         the game is not in progress.
          error GameNotInProgress();
          /// @notice Thrown when a move is attempted to be made after the clock has timed out.
          error ClockTimeExceeded();
          /// @notice Thrown when the game is attempted to be resolved too early.
          error ClockNotExpired();
          /// @notice Thrown when a move is attempted to be made at or greater than the max depth of the game.
          error GameDepthExceeded();
          /// @notice Thrown when a step is attempted above the maximum game depth.
          error InvalidParent();
          /// @notice Thrown when an invalid prestate is supplied to `step`.
          error InvalidPrestate();
          /// @notice Thrown when a step is made that computes the expected post state correctly.
          error ValidStep();
          /// @notice Thrown when a game is attempted to be initialized with an L1 head that does
          ///         not contain the disputed output root.
          error L1HeadTooOld();
          /// @notice Thrown when an invalid local identifier is passed to the `addLocalData` function.
          error InvalidLocalIdent();
          /// @notice Thrown when resolving claims out of order.
          error OutOfOrderResolution();
          /// @notice Thrown when resolving a claim that has already been resolved.
          error ClaimAlreadyResolved();
          /// @notice Thrown when a parent output root is attempted to be found on a claim that is in
          ///         the output root portion of the tree.
          error ClaimAboveSplit();
          /// @notice Thrown on deployment if the split depth is greater than or equal to the max
          ///         depth of the game.
          error InvalidSplitDepth();
          /// @notice Thrown on deployment if the max clock duration is less than or equal to the clock extension.
          error InvalidClockExtension();
          /// @notice Thrown on deployment if the PreimageOracle challenge period is too high.
          error InvalidChallengePeriod();
          /// @notice Thrown on deployment if the max depth is greater than `LibPosition.`
          error MaxDepthTooLarge();
          /// @notice Thrown when trying to step against a claim for a second time, after it has already been countered with
          ///         an instruction step.
          error DuplicateStep();
          /// @notice Thrown when an anchor root is not found for a given game type.
          error AnchorRootNotFound();
          /// @notice Thrown when an output root proof is invalid.
          error InvalidOutputRootProof();
          /// @notice Thrown when header RLP is invalid with respect to the block hash in an output root proof.
          error InvalidHeaderRLP();
          /// @notice Thrown when there is a match between the block number in the output root proof and the block number
          ///         claimed in the dispute game.
          error BlockNumberMatches();
          /// @notice Thrown when the L2 block number claim has already been challenged.
          error L2BlockNumberChallenged();
          /// @notice Thrown when the game is not yet finalized.
          error GameNotFinalized();
          /// @notice Thrown when an invalid bond distribution mode is supplied.
          error InvalidBondDistributionMode();
          /// @notice Thrown when the game is not yet resolved.
          error GameNotResolved();
          /// @notice Thrown when a reserved game type is used.
          error ReservedGameType();
          ////////////////////////////////////////////////////////////////
          //              `PermissionedDisputeGame` Errors              //
          ////////////////////////////////////////////////////////////////
          /// @notice Thrown when an unauthorized address attempts to interact with the game.
          error BadAuth();
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          /// @title ISemver
          /// @notice ISemver is a simple contract for ensuring that contracts are
          ///         versioned using semantic versioning.
          interface ISemver {
              /// @notice Getter for the semantic version of the contract. This is not
              ///         meant to be used onchain but instead meant to be used by offchain
              ///         tooling.
              /// @return Semver contract version as a string.
              function version() external view returns (string memory);
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          import { IInitializable } from "interfaces/dispute/IInitializable.sol";
          import { Timestamp, GameStatus, GameType, Claim, Hash } from "src/dispute/lib/Types.sol";
          interface IDisputeGame is IInitializable {
              event Resolved(GameStatus indexed status);
              function createdAt() external view returns (Timestamp);
              function resolvedAt() external view returns (Timestamp);
              function status() external view returns (GameStatus);
              function gameType() external view returns (GameType gameType_);
              function gameCreator() external pure returns (address creator_);
              function rootClaim() external pure returns (Claim rootClaim_);
              function l1Head() external pure returns (Hash l1Head_);
              function l2BlockNumber() external pure returns (uint256 l2BlockNumber_);
              function extraData() external pure returns (bytes memory extraData_);
              function resolve() external returns (GameStatus status_);
              function gameData() external view returns (GameType gameType_, Claim rootClaim_, bytes memory extraData_);
              function wasRespectedGameTypeWhenCreated() external view returns (bool);
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
          pragma solidity ^0.8.0;
          import "../proxy/utils/Initializable.sol";
          /**
           * @dev Provides information about the current execution context, including the
           * sender of the transaction and its data. While these are generally available
           * via msg.sender and msg.data, they should not be accessed in such a direct
           * manner, since when dealing with meta-transactions the account sending and
           * paying for execution may not be the actual sender (as far as an application
           * is concerned).
           *
           * This contract is only required for intermediate, library-like contracts.
           */
          abstract contract ContextUpgradeable is Initializable {
              function __Context_init() internal onlyInitializing {
              }
              function __Context_init_unchained() internal onlyInitializing {
              }
              function _msgSender() internal view virtual returns (address) {
                  return msg.sender;
              }
              function _msgData() internal view virtual returns (bytes calldata) {
                  return msg.data;
              }
              /**
               * @dev This empty reserved space is put in place to allow future versions to add new
               * variables without shifting down storage in the inheritance chain.
               * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
               */
              uint256[50] private __gap;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
          pragma solidity ^0.8.2;
          import "../../utils/AddressUpgradeable.sol";
          /**
           * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
           * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
           * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
           * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
           *
           * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
           * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
           * case an upgrade adds a module that needs to be initialized.
           *
           * For example:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * contract MyToken is ERC20Upgradeable {
           *     function initialize() initializer public {
           *         __ERC20_init("MyToken", "MTK");
           *     }
           * }
           * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
           *     function initializeV2() reinitializer(2) public {
           *         __ERC20Permit_init("MyToken");
           *     }
           * }
           * ```
           *
           * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
           * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
           *
           * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
           * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
           *
           * [CAUTION]
           * ====
           * Avoid leaving a contract uninitialized.
           *
           * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
           * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
           * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
           *
           * [.hljs-theme-light.nopadding]
           * ```
           * /// @custom:oz-upgrades-unsafe-allow constructor
           * constructor() {
           *     _disableInitializers();
           * }
           * ```
           * ====
           */
          abstract contract Initializable {
              /**
               * @dev Indicates that the contract has been initialized.
               * @custom:oz-retyped-from bool
               */
              uint8 private _initialized;
              /**
               * @dev Indicates that the contract is in the process of being initialized.
               */
              bool private _initializing;
              /**
               * @dev Triggered when the contract has been initialized or reinitialized.
               */
              event Initialized(uint8 version);
              /**
               * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
               * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
               */
              modifier initializer() {
                  bool isTopLevelCall = !_initializing;
                  require(
                      (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                      "Initializable: contract is already initialized"
                  );
                  _initialized = 1;
                  if (isTopLevelCall) {
                      _initializing = true;
                  }
                  _;
                  if (isTopLevelCall) {
                      _initializing = false;
                      emit Initialized(1);
                  }
              }
              /**
               * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
               * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
               * used to initialize parent contracts.
               *
               * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
               * initialization step. This is essential to configure modules that are added through upgrades and that require
               * initialization.
               *
               * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
               * a contract, executing them in the right order is up to the developer or operator.
               */
              modifier reinitializer(uint8 version) {
                  require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                  _initialized = version;
                  _initializing = true;
                  _;
                  _initializing = false;
                  emit Initialized(version);
              }
              /**
               * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
               * {initializer} and {reinitializer} modifiers, directly or indirectly.
               */
              modifier onlyInitializing() {
                  require(_initializing, "Initializable: contract is not initializing");
                  _;
              }
              /**
               * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
               * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
               * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
               * through proxies.
               */
              function _disableInitializers() internal virtual {
                  require(!_initializing, "Initializable: contract is initializing");
                  if (_initialized < type(uint8).max) {
                      _initialized = type(uint8).max;
                      emit Initialized(type(uint8).max);
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.15;
          // Libraries
          import { Position } from "src/dispute/lib/LibPosition.sol";
          using LibClaim for Claim global;
          using LibHash for Hash global;
          using LibDuration for Duration global;
          using LibClock for Clock global;
          using LibGameId for GameId global;
          using LibTimestamp for Timestamp global;
          using LibVMStatus for VMStatus global;
          using LibGameType for GameType global;
          /// @notice A `Clock` represents a packed `Duration` and `Timestamp`
          /// @dev The packed layout of this type is as follows:
          /// ┌────────────┬────────────────┐
          /// │    Bits    │     Value      │
          /// ├────────────┼────────────────┤
          /// │ [0, 64)    │ Duration       │
          /// │ [64, 128)  │ Timestamp      │
          /// └────────────┴────────────────┘
          type Clock is uint128;
          /// @title LibClock
          /// @notice This library contains helper functions for working with the `Clock` type.
          library LibClock {
              /// @notice Packs a `Duration` and `Timestamp` into a `Clock` type.
              /// @param _duration The `Duration` to pack into the `Clock` type.
              /// @param _timestamp The `Timestamp` to pack into the `Clock` type.
              /// @return clock_ The `Clock` containing the `_duration` and `_timestamp`.
              function wrap(Duration _duration, Timestamp _timestamp) internal pure returns (Clock clock_) {
                  assembly {
                      clock_ := or(shl(0x40, _duration), _timestamp)
                  }
              }
              /// @notice Pull the `Duration` out of a `Clock` type.
              /// @param _clock The `Clock` type to pull the `Duration` out of.
              /// @return duration_ The `Duration` pulled out of `_clock`.
              function duration(Clock _clock) internal pure returns (Duration duration_) {
                  // Shift the high-order 64 bits into the low-order 64 bits, leaving only the `duration`.
                  assembly {
                      duration_ := shr(0x40, _clock)
                  }
              }
              /// @notice Pull the `Timestamp` out of a `Clock` type.
              /// @param _clock The `Clock` type to pull the `Timestamp` out of.
              /// @return timestamp_ The `Timestamp` pulled out of `_clock`.
              function timestamp(Clock _clock) internal pure returns (Timestamp timestamp_) {
                  // Clean the high-order 192 bits by shifting the clock left and then right again, leaving
                  // only the `timestamp`.
                  assembly {
                      timestamp_ := shr(0xC0, shl(0xC0, _clock))
                  }
              }
              /// @notice Get the value of a `Clock` type in the form of the underlying uint128.
              /// @param _clock The `Clock` type to get the value of.
              /// @return clock_ The value of the `Clock` type as a uint128 type.
              function raw(Clock _clock) internal pure returns (uint128 clock_) {
                  assembly {
                      clock_ := _clock
                  }
              }
          }
          /// @notice A `GameId` represents a packed 4 byte game ID, a 8 byte timestamp, and a 20 byte address.
          /// @dev The packed layout of this type is as follows:
          /// ┌───────────┬───────────┐
          /// │   Bits    │   Value   │
          /// ├───────────┼───────────┤
          /// │ [0, 32)   │ Game Type │
          /// │ [32, 96)  │ Timestamp │
          /// │ [96, 256) │ Address   │
          /// └───────────┴───────────┘
          type GameId is bytes32;
          /// @title LibGameId
          /// @notice Utility functions for packing and unpacking GameIds.
          library LibGameId {
              /// @notice Packs values into a 32 byte GameId type.
              /// @param _gameType The game type.
              /// @param _timestamp The timestamp of the game's creation.
              /// @param _gameProxy The game proxy address.
              /// @return gameId_ The packed GameId.
              function pack(
                  GameType _gameType,
                  Timestamp _timestamp,
                  address _gameProxy
              )
                  internal
                  pure
                  returns (GameId gameId_)
              {
                  assembly {
                      gameId_ := or(or(shl(224, _gameType), shl(160, _timestamp)), _gameProxy)
                  }
              }
              /// @notice Unpacks values from a 32 byte GameId type.
              /// @param _gameId The packed GameId.
              /// @return gameType_ The game type.
              /// @return timestamp_ The timestamp of the game's creation.
              /// @return gameProxy_ The game proxy address.
              function unpack(GameId _gameId)
                  internal
                  pure
                  returns (GameType gameType_, Timestamp timestamp_, address gameProxy_)
              {
                  assembly {
                      gameType_ := shr(224, _gameId)
                      timestamp_ := and(shr(160, _gameId), 0xFFFFFFFFFFFFFFFF)
                      gameProxy_ := and(_gameId, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                  }
              }
          }
          /// @notice A claim represents an MPT root representing the state of the fault proof program.
          type Claim is bytes32;
          /// @title LibClaim
          /// @notice This library contains helper functions for working with the `Claim` type.
          library LibClaim {
              /// @notice Get the value of a `Claim` type in the form of the underlying bytes32.
              /// @param _claim The `Claim` type to get the value of.
              /// @return claim_ The value of the `Claim` type as a bytes32 type.
              function raw(Claim _claim) internal pure returns (bytes32 claim_) {
                  assembly {
                      claim_ := _claim
                  }
              }
              /// @notice Hashes a claim and a position together.
              /// @param _claim A Claim type.
              /// @param _position The position of `claim`.
              /// @param _challengeIndex The index of the claim being moved against.
              /// @return claimHash_ A hash of abi.encodePacked(claim, position|challengeIndex);
              function hashClaimPos(
                  Claim _claim,
                  Position _position,
                  uint256 _challengeIndex
              )
                  internal
                  pure
                  returns (Hash claimHash_)
              {
                  assembly {
                      mstore(0x00, _claim)
                      mstore(0x20, or(shl(128, _position), and(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, _challengeIndex)))
                      claimHash_ := keccak256(0x00, 0x40)
                  }
              }
          }
          /// @notice A dedicated duration type.
          /// @dev Unit: seconds
          type Duration is uint64;
          /// @title LibDuration
          /// @notice This library contains helper functions for working with the `Duration` type.
          library LibDuration {
              /// @notice Get the value of a `Duration` type in the form of the underlying uint64.
              /// @param _duration The `Duration` type to get the value of.
              /// @return duration_ The value of the `Duration` type as a uint64 type.
              function raw(Duration _duration) internal pure returns (uint64 duration_) {
                  assembly {
                      duration_ := _duration
                  }
              }
          }
          /// @notice A custom type for a generic hash.
          type Hash is bytes32;
          /// @title LibHash
          /// @notice This library contains helper functions for working with the `Hash` type.
          library LibHash {
              /// @notice Get the value of a `Hash` type in the form of the underlying bytes32.
              /// @param _hash The `Hash` type to get the value of.
              /// @return hash_ The value of the `Hash` type as a bytes32 type.
              function raw(Hash _hash) internal pure returns (bytes32 hash_) {
                  assembly {
                      hash_ := _hash
                  }
              }
          }
          /// @notice A dedicated timestamp type.
          type Timestamp is uint64;
          /// @title LibTimestamp
          /// @notice This library contains helper functions for working with the `Timestamp` type.
          library LibTimestamp {
              /// @notice Get the value of a `Timestamp` type in the form of the underlying uint64.
              /// @param _timestamp The `Timestamp` type to get the value of.
              /// @return timestamp_ The value of the `Timestamp` type as a uint64 type.
              function raw(Timestamp _timestamp) internal pure returns (uint64 timestamp_) {
                  assembly {
                      timestamp_ := _timestamp
                  }
              }
          }
          /// @notice A `VMStatus` represents the status of a VM execution.
          type VMStatus is uint8;
          /// @title LibVMStatus
          /// @notice This library contains helper functions for working with the `VMStatus` type.
          library LibVMStatus {
              /// @notice Get the value of a `VMStatus` type in the form of the underlying uint8.
              /// @param _vmstatus The `VMStatus` type to get the value of.
              /// @return vmstatus_ The value of the `VMStatus` type as a uint8 type.
              function raw(VMStatus _vmstatus) internal pure returns (uint8 vmstatus_) {
                  assembly {
                      vmstatus_ := _vmstatus
                  }
              }
          }
          /// @notice A `GameType` represents the type of game being played.
          type GameType is uint32;
          /// @title LibGameType
          /// @notice This library contains helper functions for working with the `GameType` type.
          library LibGameType {
              /// @notice Get the value of a `GameType` type in the form of the underlying uint32.
              /// @param _gametype The `GameType` type to get the value of.
              /// @return gametype_ The value of the `GameType` type as a uint32 type.
              function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
                  assembly {
                      gametype_ := _gametype
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.0;
          interface IInitializable {
              function initialize() external payable;
          }
          // SPDX-License-Identifier: MIT
          // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
          pragma solidity ^0.8.1;
          /**
           * @dev Collection of functions related to the address type
           */
          library AddressUpgradeable {
              /**
               * @dev Returns true if `account` is a contract.
               *
               * [IMPORTANT]
               * ====
               * It is unsafe to assume that an address for which this function returns
               * false is an externally-owned account (EOA) and not a contract.
               *
               * Among others, `isContract` will return false for the following
               * types of addresses:
               *
               *  - an externally-owned account
               *  - a contract in construction
               *  - an address where a contract will be created
               *  - an address where a contract lived, but was destroyed
               * ====
               *
               * [IMPORTANT]
               * ====
               * You shouldn't rely on `isContract` to protect against flash loan attacks!
               *
               * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
               * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
               * constructor.
               * ====
               */
              function isContract(address account) internal view returns (bool) {
                  // This method relies on extcodesize/address.code.length, which returns 0
                  // for contracts in construction, since the code is only stored at the end
                  // of the constructor execution.
                  return account.code.length > 0;
              }
              /**
               * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
               * `recipient`, forwarding all available gas and reverting on errors.
               *
               * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
               * of certain opcodes, possibly making contracts go over the 2300 gas limit
               * imposed by `transfer`, making them unable to receive funds via
               * `transfer`. {sendValue} removes this limitation.
               *
               * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
               *
               * IMPORTANT: because control is transferred to `recipient`, care must be
               * taken to not create reentrancy vulnerabilities. Consider using
               * {ReentrancyGuard} or the
               * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
               */
              function sendValue(address payable recipient, uint256 amount) internal {
                  require(address(this).balance >= amount, "Address: insufficient balance");
                  (bool success, ) = recipient.call{value: amount}("");
                  require(success, "Address: unable to send value, recipient may have reverted");
              }
              /**
               * @dev Performs a Solidity function call using a low level `call`. A
               * plain `call` is an unsafe replacement for a function call: use this
               * function instead.
               *
               * If `target` reverts with a revert reason, it is bubbled up by this
               * function (like regular Solidity function calls).
               *
               * Returns the raw returned data. To convert to the expected return value,
               * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
               *
               * Requirements:
               *
               * - `target` must be a contract.
               * - calling `target` with `data` must not revert.
               *
               * _Available since v3.1._
               */
              function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                  return functionCall(target, data, "Address: low-level call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
               * `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, 0, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but also transferring `value` wei to `target`.
               *
               * Requirements:
               *
               * - the calling contract must have an ETH balance of at least `value`.
               * - the called Solidity function must be `payable`.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value
              ) internal returns (bytes memory) {
                  return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
              }
              /**
               * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
               * with `errorMessage` as a fallback revert reason when `target` reverts.
               *
               * _Available since v3.1._
               */
              function functionCallWithValue(
                  address target,
                  bytes memory data,
                  uint256 value,
                  string memory errorMessage
              ) internal returns (bytes memory) {
                  require(address(this).balance >= value, "Address: insufficient balance for call");
                  require(isContract(target), "Address: call to non-contract");
                  (bool success, bytes memory returndata) = target.call{value: value}(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                  return functionStaticCall(target, data, "Address: low-level static call failed");
              }
              /**
               * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
               * but performing a static call.
               *
               * _Available since v3.3._
               */
              function functionStaticCall(
                  address target,
                  bytes memory data,
                  string memory errorMessage
              ) internal view returns (bytes memory) {
                  require(isContract(target), "Address: static call to non-contract");
                  (bool success, bytes memory returndata) = target.staticcall(data);
                  return verifyCallResult(success, returndata, errorMessage);
              }
              /**
               * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
               * revert reason using the provided one.
               *
               * _Available since v4.3._
               */
              function verifyCallResult(
                  bool success,
                  bytes memory returndata,
                  string memory errorMessage
              ) internal pure returns (bytes memory) {
                  if (success) {
                      return returndata;
                  } else {
                      // Look for revert reason and bubble it up if present
                      if (returndata.length > 0) {
                          // The easiest way to bubble the revert reason is using memory via assembly
                          /// @solidity memory-safe-assembly
                          assembly {
                              let returndata_size := mload(returndata)
                              revert(add(32, returndata), returndata_size)
                          }
                      } else {
                          revert(errorMessage);
                      }
                  }
              }
          }
          // SPDX-License-Identifier: MIT
          pragma solidity ^0.8.15;
          using LibPosition for Position global;
          /// @notice A `Position` represents a position of a claim within the game tree.
          /// @dev This is represented as a "generalized index" where the high-order bit
          /// is the level in the tree and the remaining bits is a unique bit pattern, allowing
          /// a unique identifier for each node in the tree. Mathematically, it is calculated
          /// as 2^{depth} + indexAtDepth.
          type Position is uint128;
          /// @title LibPosition
          /// @notice This library contains helper functions for working with the `Position` type.
          library LibPosition {
              /// @notice the `MAX_POSITION_BITLEN` is the number of bits that the `Position` type, and the implementation of
              ///         its behavior within this library, can safely support.
              uint8 internal constant MAX_POSITION_BITLEN = 126;
              /// @notice Computes a generalized index (2^{depth} + indexAtDepth).
              /// @param _depth The depth of the position.
              /// @param _indexAtDepth The index at the depth of the position.
              /// @return position_ The computed generalized index.
              function wrap(uint8 _depth, uint128 _indexAtDepth) internal pure returns (Position position_) {
                  assembly {
                      // gindex = 2^{_depth} + _indexAtDepth
                      position_ := add(shl(_depth, 1), _indexAtDepth)
                  }
              }
              /// @notice Pulls the `depth` out of a `Position` type.
              /// @param _position The generalized index to get the `depth` of.
              /// @return depth_ The `depth` of the `position` gindex.
              /// @custom:attribution Solady <https://github.com/Vectorized/Solady>
              function depth(Position _position) internal pure returns (uint8 depth_) {
                  // Return the most significant bit offset, which signifies the depth of the gindex.
                  assembly {
                      depth_ := or(depth_, shl(6, lt(0xffffffffffffffff, shr(depth_, _position))))
                      depth_ := or(depth_, shl(5, lt(0xffffffff, shr(depth_, _position))))
                      // For the remaining 32 bits, use a De Bruijn lookup.
                      _position := shr(depth_, _position)
                      _position := or(_position, shr(1, _position))
                      _position := or(_position, shr(2, _position))
                      _position := or(_position, shr(4, _position))
                      _position := or(_position, shr(8, _position))
                      _position := or(_position, shr(16, _position))
                      depth_ :=
                          or(
                              depth_,
                              byte(
                                  shr(251, mul(_position, shl(224, 0x07c4acdd))),
                                  0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f
                              )
                          )
                  }
              }
              /// @notice Pulls the `indexAtDepth` out of a `Position` type.
              ///         The `indexAtDepth` is the left/right index of a position at a specific depth within
              ///         the binary tree, starting from index 0. For example, at gindex 2, the `depth` = 1
              ///         and the `indexAtDepth` = 0.
              /// @param _position The generalized index to get the `indexAtDepth` of.
              /// @return indexAtDepth_ The `indexAtDepth` of the `position` gindex.
              function indexAtDepth(Position _position) internal pure returns (uint128 indexAtDepth_) {
                  // Return bits p_{msb-1}...p_{0}. This effectively pulls the 2^{depth} out of the gindex,
                  // leaving only the `indexAtDepth`.
                  uint256 msb = depth(_position);
                  assembly {
                      indexAtDepth_ := sub(_position, shl(msb, 1))
                  }
              }
              /// @notice Get the left child of `_position`.
              /// @param _position The position to get the left position of.
              /// @return left_ The position to the left of `position`.
              function left(Position _position) internal pure returns (Position left_) {
                  assembly {
                      left_ := shl(1, _position)
                  }
              }
              /// @notice Get the right child of `_position`
              /// @param _position The position to get the right position of.
              /// @return right_ The position to the right of `position`.
              function right(Position _position) internal pure returns (Position right_) {
                  assembly {
                      right_ := or(1, shl(1, _position))
                  }
              }
              /// @notice Get the parent position of `_position`.
              /// @param _position The position to get the parent position of.
              /// @return parent_ The parent position of `position`.
              function parent(Position _position) internal pure returns (Position parent_) {
                  assembly {
                      parent_ := shr(1, _position)
                  }
              }
              /// @notice Get the deepest, right most gindex relative to the `position`. This is equivalent to
              ///         calling `right` on a position until the maximum depth is reached.
              /// @param _position The position to get the relative deepest, right most gindex of.
              /// @param _maxDepth The maximum depth of the game.
              /// @return rightIndex_ The deepest, right most gindex relative to the `position`.
              function rightIndex(Position _position, uint256 _maxDepth) internal pure returns (Position rightIndex_) {
                  uint256 msb = depth(_position);
                  assembly {
                      let remaining := sub(_maxDepth, msb)
                      rightIndex_ := or(shl(remaining, _position), sub(shl(remaining, 1), 1))
                  }
              }
              /// @notice Get the deepest, right most trace index relative to the `position`. This is
              ///         equivalent to calling `right` on a position until the maximum depth is reached and
              ///         then finding its index at depth.
              /// @param _position The position to get the relative trace index of.
              /// @param _maxDepth The maximum depth of the game.
              /// @return traceIndex_ The trace index relative to the `position`.
              function traceIndex(Position _position, uint256 _maxDepth) internal pure returns (uint256 traceIndex_) {
                  uint256 msb = depth(_position);
                  assembly {
                      let remaining := sub(_maxDepth, msb)
                      traceIndex_ := sub(or(shl(remaining, _position), sub(shl(remaining, 1), 1)), shl(_maxDepth, 1))
                  }
              }
              /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
              ///         trace index.
              /// @param _position The position to get the highest ancestor of.
              /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
              function traceAncestor(Position _position) internal pure returns (Position ancestor_) {
                  // Create a field with only the lowest unset bit of `_position` set.
                  Position lsb;
                  assembly {
                      lsb := and(not(_position), add(_position, 1))
                  }
                  // Find the index of the lowest unset bit within the field.
                  uint256 msb = depth(lsb);
                  // The highest ancestor that commits to the same trace index is the original position
                  // shifted right by the index of the lowest unset bit.
                  assembly {
                      let a := shr(msb, _position)
                      // Bound the ancestor to the minimum gindex, 1.
                      ancestor_ := or(a, iszero(a))
                  }
              }
              /// @notice Gets the position of the highest ancestor of `_position` that commits to the same
              ///         trace index, while still being below `_upperBoundExclusive`.
              /// @param _position The position to get the highest ancestor of.
              /// @param _upperBoundExclusive The exclusive upper depth bound, used to inform where to stop in order
              ///                             to not escape a sub-tree.
              /// @return ancestor_ The highest ancestor of `position` that commits to the same trace index.
              function traceAncestorBounded(
                  Position _position,
                  uint256 _upperBoundExclusive
              )
                  internal
                  pure
                  returns (Position ancestor_)
              {
                  // This function only works for positions that are below the upper bound.
                  if (_position.depth() <= _upperBoundExclusive) {
                      assembly {
                          // Revert with `ClaimAboveSplit()`
                          mstore(0x00, 0xb34b5c22)
                          revert(0x1C, 0x04)
                      }
                  }
                  // Grab the global trace ancestor.
                  ancestor_ = traceAncestor(_position);
                  // If the ancestor is above or at the upper bound, shift it to be below the upper bound.
                  // This should be a special case that only covers positions that commit to the final leaf
                  // in a sub-tree.
                  if (ancestor_.depth() <= _upperBoundExclusive) {
                      ancestor_ = ancestor_.rightIndex(_upperBoundExclusive + 1);
                  }
              }
              /// @notice Get the move position of `_position`, which is the left child of:
              ///         1. `_position` if `_isAttack` is true.
              ///         2. `_position | 1` if `_isAttack` is false.
              /// @param _position The position to get the relative attack/defense position of.
              /// @param _isAttack Whether or not the move is an attack move.
              /// @return move_ The move position relative to `position`.
              function move(Position _position, bool _isAttack) internal pure returns (Position move_) {
                  assembly {
                      move_ := shl(1, or(iszero(_isAttack), _position))
                  }
              }
              /// @notice Get the value of a `Position` type in the form of the underlying uint128.
              /// @param _position The position to get the value of.
              /// @return raw_ The value of the `position` as a uint128 type.
              function raw(Position _position) internal pure returns (uint128 raw_) {
                  assembly {
                      raw_ := _position
                  }
              }
          }