ETH Price: $1,978.07 (+0.21%)

Transaction Decoder

Block:
18415856 at Oct-23-2023 10:09:11 PM +UTC
Transaction Fee:
0.000377545946333183 ETH $0.75
Gas Used:
27,439 Gas / 13.759464497 Gwei

Account State Difference:

  Address   Before After State Difference Code
1.344514285780858458 Eth1.344517029680858458 Eth0.0000027439
0xCC3f33b1...64cfF19c3
0.004718525036558158 Eth
Nonce: 281
0.004340979090224975 Eth
Nonce: 282
0.000377545946333183

Execution Trace

0x296e350600c56313e5a458b553b07a1aff3466a5.91d14854( )
  • MvxCollection.hasRole( role=CB7E89B7EED8294D41C0215E2F4FE023E2166AFCFA3D1F479C394274AFE5F019, account=0xCC3f33b1F43824DA5a7465ec2D8283064cfF19c3 ) => ( True )
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.20;
    // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
    // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
    /**
     * @dev External interface of AccessControl declared to support ERC165 detection.
     */
    interface IAccessControlUpgradeable {
        /**
         * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
         *
         * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
         * {RoleAdminChanged} not being emitted signaling this.
         *
         * _Available since v3.1._
         */
        event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
        /**
         * @dev Emitted when `account` is granted `role`.
         *
         * `sender` is the account that originated the contract call, an admin role
         * bearer except when using {AccessControl-_setupRole}.
         */
        event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
        /**
         * @dev Emitted when `account` is revoked `role`.
         *
         * `sender` is the account that originated the contract call:
         *   - if using `revokeRole`, it is the admin role bearer
         *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
         */
        event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) external view returns (bool);
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {AccessControl-_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) external view returns (bytes32);
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function grantRole(bytes32 role, address account) external;
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function revokeRole(bytes32 role, address account) external;
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been granted `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         */
        function renounceRole(bytes32 role, address account) external;
    }
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
    /**
     * @dev Collection of functions related to the address type
     */
    library AddressUpgradeable {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         *
         * Furthermore, `isContract` will also return true if the target contract within
         * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
         * which only has an effect at the end of a transaction.
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```solidity
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     *
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Indicates that the contract has been initialized.
         * @custom:oz-retyped-from bool
         */
        uint8 private _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool private _initializing;
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint8 version);
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
         * constructor.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            bool isTopLevelCall = !_initializing;
            require(
                (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                "Initializable: contract is already initialized"
            );
            _initialized = 1;
            if (isTopLevelCall) {
                _initializing = true;
            }
            _;
            if (isTopLevelCall) {
                _initializing = false;
                emit Initialized(1);
            }
        }
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: setting the version to 255 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint8 version) {
            require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
            _initialized = version;
            _initializing = true;
            _;
            _initializing = false;
            emit Initialized(version);
        }
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            require(_initializing, "Initializable: contract is not initializing");
            _;
        }
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            require(!_initializing, "Initializable: contract is initializing");
            if (_initialized != type(uint8).max) {
                _initialized = type(uint8).max;
                emit Initialized(type(uint8).max);
            }
        }
        /**
         * @dev Returns the highest version that has been initialized. See {reinitializer}.
         */
        function _getInitializedVersion() internal view returns (uint8) {
            return _initialized;
        }
        /**
         * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
         */
        function _isInitializing() internal view returns (bool) {
            return _initializing;
        }
    }
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
    // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library MathUpgradeable {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1, "Math: mulDiv overflow");
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
            }
        }
    }
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
    /**
     * @dev Standard signed math utilities missing in the Solidity language.
     */
    library SignedMathUpgradeable {
        /**
         * @dev Returns the largest of two signed numbers.
         */
        function max(int256 a, int256 b) internal pure returns (int256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two signed numbers.
         */
        function min(int256 a, int256 b) internal pure returns (int256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two signed numbers without overflow.
         * The result is rounded towards zero.
         */
        function average(int256 a, int256 b) internal pure returns (int256) {
            // Formula from the book "Hacker's Delight"
            int256 x = (a & b) + ((a ^ b) >> 1);
            return x + (int256(uint256(x) >> 255) & (a ^ b));
        }
        /**
         * @dev Returns the absolute unsigned value of a signed value.
         */
        function abs(int256 n) internal pure returns (uint256) {
            unchecked {
                // must be unchecked in order to support `n = type(int256).min`
                return uint256(n >= 0 ? n : -n);
            }
        }
    }
    /**
     * @dev String operations.
     */
    library StringsUpgradeable {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = MathUpgradeable.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `int256` to its ASCII `string` decimal representation.
         */
        function toString(int256 value) internal pure returns (string memory) {
            return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, MathUpgradeable.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
        /**
         * @dev Returns true if the two strings are equal.
         */
        function equal(string memory a, string memory b) internal pure returns (bool) {
            return keccak256(bytes(a)) == keccak256(bytes(b));
        }
    }
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165Upgradeable {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     *
     * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
     */
    abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
        function __ERC165_init() internal onlyInitializing {
        }
        function __ERC165_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IERC165Upgradeable).interfaceId;
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[50] private __gap;
    }
    /**
     * @dev Contract module that allows children to implement role-based access
     * control mechanisms. This is a lightweight version that doesn't allow enumerating role
     * members except through off-chain means by accessing the contract event logs. Some
     * applications may benefit from on-chain enumerability, for those cases see
     * {AccessControlEnumerable}.
     *
     * Roles are referred to by their `bytes32` identifier. These should be exposed
     * in the external API and be unique. The best way to achieve this is by
     * using `public constant` hash digests:
     *
     * ```solidity
     * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
     * ```
     *
     * Roles can be used to represent a set of permissions. To restrict access to a
     * function call, use {hasRole}:
     *
     * ```solidity
     * function foo() public {
     *     require(hasRole(MY_ROLE, msg.sender));
     *     ...
     * }
     * ```
     *
     * Roles can be granted and revoked dynamically via the {grantRole} and
     * {revokeRole} functions. Each role has an associated admin role, and only
     * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
     *
     * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
     * that only accounts with this role will be able to grant or revoke other
     * roles. More complex role relationships can be created by using
     * {_setRoleAdmin}.
     *
     * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
     * grant and revoke this role. Extra precautions should be taken to secure
     * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
     * to enforce additional security measures for this role.
     */
    abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
        function __AccessControl_init() internal onlyInitializing {
        }
        function __AccessControl_init_unchained() internal onlyInitializing {
        }
        struct RoleData {
            mapping(address => bool) members;
            bytes32 adminRole;
        }
        mapping(bytes32 => RoleData) private _roles;
        bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
        /**
         * @dev Modifier that checks that an account has a specific role. Reverts
         * with a standardized message including the required role.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         *
         * _Available since v4.1._
         */
        modifier onlyRole(bytes32 role) {
            _checkRole(role);
            _;
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
        }
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
            return _roles[role].members[account];
        }
        /**
         * @dev Revert with a standard message if `_msgSender()` is missing `role`.
         * Overriding this function changes the behavior of the {onlyRole} modifier.
         *
         * Format of the revert message is described in {_checkRole}.
         *
         * _Available since v4.6._
         */
        function _checkRole(bytes32 role) internal view virtual {
            _checkRole(role, _msgSender());
        }
        /**
         * @dev Revert with a standard message if `account` is missing `role`.
         *
         * The format of the revert reason is given by the following regular expression:
         *
         *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
         */
        function _checkRole(bytes32 role, address account) internal view virtual {
            if (!hasRole(role, account)) {
                revert(
                    string(
                        abi.encodePacked(
                            "AccessControl: account ",
                            StringsUpgradeable.toHexString(account),
                            " is missing role ",
                            StringsUpgradeable.toHexString(uint256(role), 32)
                        )
                    )
                );
            }
        }
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
            return _roles[role].adminRole;
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleGranted} event.
         */
        function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _grantRole(role, account);
        }
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         *
         * May emit a {RoleRevoked} event.
         */
        function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
            _revokeRole(role, account);
        }
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been revoked `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         *
         * May emit a {RoleRevoked} event.
         */
        function renounceRole(bytes32 role, address account) public virtual override {
            require(account == _msgSender(), "AccessControl: can only renounce roles for self");
            _revokeRole(role, account);
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event. Note that unlike {grantRole}, this function doesn't perform any
         * checks on the calling account.
         *
         * May emit a {RoleGranted} event.
         *
         * [WARNING]
         * ====
         * This function should only be called from the constructor when setting
         * up the initial roles for the system.
         *
         * Using this function in any other way is effectively circumventing the admin
         * system imposed by {AccessControl}.
         * ====
         *
         * NOTE: This function is deprecated in favor of {_grantRole}.
         */
        function _setupRole(bytes32 role, address account) internal virtual {
            _grantRole(role, account);
        }
        /**
         * @dev Sets `adminRole` as ``role``'s admin role.
         *
         * Emits a {RoleAdminChanged} event.
         */
        function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
            bytes32 previousAdminRole = getRoleAdmin(role);
            _roles[role].adminRole = adminRole;
            emit RoleAdminChanged(role, previousAdminRole, adminRole);
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleGranted} event.
         */
        function _grantRole(bytes32 role, address account) internal virtual {
            if (!hasRole(role, account)) {
                _roles[role].members[account] = true;
                emit RoleGranted(role, account, _msgSender());
            }
        }
        /**
         * @dev Revokes `role` from `account`.
         *
         * Internal function without access restriction.
         *
         * May emit a {RoleRevoked} event.
         */
        function _revokeRole(bytes32 role, address account) internal virtual {
            if (hasRole(role, account)) {
                _roles[role].members[account] = false;
                emit RoleRevoked(role, account, _msgSender());
            }
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
    // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
    /**
     * @dev Interface of the ERC165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[EIP].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }
    /**
     * @dev Interface for the NFT Royalty Standard.
     *
     * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
     * support for royalty payments across all NFT marketplaces and ecosystem participants.
     *
     * _Available since v4.5._
     */
    interface IERC2981 is IERC165 {
        /**
         * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
         * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
         */
        function royaltyInfo(
            uint256 tokenId,
            uint256 salePrice
        ) external view returns (address receiver, uint256 royaltyAmount);
    }
    /// @notice Class with helper read functions for clone with immutable args.
    /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Clone.sol)
    /// @author Adapted from clones with immutable args by zefram.eth, Saw-mon & Natalie
    /// (https://github.com/Saw-mon-and-Natalie/clones-with-immutable-args)
    abstract contract Clone {
        /// @dev Reads all of the immutable args.
        function _getArgBytes() internal pure returns (bytes memory arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := mload(0x40)
                let length := sub(calldatasize(), add(2, offset)) // 2 bytes are used for the length.
                mstore(arg, length) // Store the length.
                calldatacopy(add(arg, 0x20), offset, length)
                let o := add(add(arg, 0x20), length)
                mstore(o, 0) // Zeroize the slot after the bytes.
                mstore(0x40, add(o, 0x20)) // Allocate the memory.
            }
        }
        /// @dev Reads an immutable arg with type bytes.
        function _getArgBytes(uint256 argOffset, uint256 length)
            internal
            pure
            returns (bytes memory arg)
        {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := mload(0x40)
                mstore(arg, length) // Store the length.
                calldatacopy(add(arg, 0x20), add(offset, argOffset), length)
                let o := add(add(arg, 0x20), length)
                mstore(o, 0) // Zeroize the slot after the bytes.
                mstore(0x40, add(o, 0x20)) // Allocate the memory.
            }
        }
        /// @dev Reads an immutable arg with type address.
        function _getArgAddress(uint256 argOffset) internal pure returns (address arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(96, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads a uint256 array stored in the immutable args.
        function _getArgUint256Array(uint256 argOffset, uint256 length)
            internal
            pure
            returns (uint256[] memory arg)
        {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := mload(0x40)
                mstore(arg, length) // Store the length.
                calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length))
                mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory.
            }
        }
        /// @dev Reads a bytes32 array stored in the immutable args.
        function _getArgBytes32Array(uint256 argOffset, uint256 length)
            internal
            pure
            returns (bytes32[] memory arg)
        {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := mload(0x40)
                mstore(arg, length) // Store the length.
                calldatacopy(add(arg, 0x20), add(offset, argOffset), shl(5, length))
                mstore(0x40, add(add(arg, 0x20), shl(5, length))) // Allocate the memory.
            }
        }
        /// @dev Reads an immutable arg with type bytes32.
        function _getArgBytes32(uint256 argOffset) internal pure returns (bytes32 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := calldataload(add(offset, argOffset))
            }
        }
        /// @dev Reads an immutable arg with type uint256.
        function _getArgUint256(uint256 argOffset) internal pure returns (uint256 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := calldataload(add(offset, argOffset))
            }
        }
        /// @dev Reads an immutable arg with type uint248.
        function _getArgUint248(uint256 argOffset) internal pure returns (uint248 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(8, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint240.
        function _getArgUint240(uint256 argOffset) internal pure returns (uint240 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(16, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint232.
        function _getArgUint232(uint256 argOffset) internal pure returns (uint232 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(24, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint224.
        function _getArgUint224(uint256 argOffset) internal pure returns (uint224 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(0x20, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint216.
        function _getArgUint216(uint256 argOffset) internal pure returns (uint216 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(40, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint208.
        function _getArgUint208(uint256 argOffset) internal pure returns (uint208 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(48, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint200.
        function _getArgUint200(uint256 argOffset) internal pure returns (uint200 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(56, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint192.
        function _getArgUint192(uint256 argOffset) internal pure returns (uint192 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(64, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint184.
        function _getArgUint184(uint256 argOffset) internal pure returns (uint184 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(72, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint176.
        function _getArgUint176(uint256 argOffset) internal pure returns (uint176 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(80, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint168.
        function _getArgUint168(uint256 argOffset) internal pure returns (uint168 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(88, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint160.
        function _getArgUint160(uint256 argOffset) internal pure returns (uint160 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(96, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint152.
        function _getArgUint152(uint256 argOffset) internal pure returns (uint152 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(104, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint144.
        function _getArgUint144(uint256 argOffset) internal pure returns (uint144 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(112, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint136.
        function _getArgUint136(uint256 argOffset) internal pure returns (uint136 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(120, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint128.
        function _getArgUint128(uint256 argOffset) internal pure returns (uint128 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(128, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint120.
        function _getArgUint120(uint256 argOffset) internal pure returns (uint120 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(136, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint112.
        function _getArgUint112(uint256 argOffset) internal pure returns (uint112 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(144, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint104.
        function _getArgUint104(uint256 argOffset) internal pure returns (uint104 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(152, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint96.
        function _getArgUint96(uint256 argOffset) internal pure returns (uint96 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(160, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint88.
        function _getArgUint88(uint256 argOffset) internal pure returns (uint88 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(168, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint80.
        function _getArgUint80(uint256 argOffset) internal pure returns (uint80 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(176, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint72.
        function _getArgUint72(uint256 argOffset) internal pure returns (uint72 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(184, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint64.
        function _getArgUint64(uint256 argOffset) internal pure returns (uint64 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(192, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint56.
        function _getArgUint56(uint256 argOffset) internal pure returns (uint56 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(200, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint48.
        function _getArgUint48(uint256 argOffset) internal pure returns (uint48 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(208, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint40.
        function _getArgUint40(uint256 argOffset) internal pure returns (uint40 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(216, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint32.
        function _getArgUint32(uint256 argOffset) internal pure returns (uint32 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(224, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint24.
        function _getArgUint24(uint256 argOffset) internal pure returns (uint24 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(232, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint16.
        function _getArgUint16(uint256 argOffset) internal pure returns (uint16 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(240, calldataload(add(offset, argOffset)))
            }
        }
        /// @dev Reads an immutable arg with type uint8.
        function _getArgUint8(uint256 argOffset) internal pure returns (uint8 arg) {
            uint256 offset = _getImmutableArgsOffset();
            /// @solidity memory-safe-assembly
            assembly {
                arg := shr(248, calldataload(add(offset, argOffset)))
            }
        }
        /// @return offset The offset of the packed immutable args in calldata.
        function _getImmutableArgsOffset() internal pure returns (uint256 offset) {
            /// @solidity memory-safe-assembly
            assembly {
                offset := sub(calldatasize(), shr(240, calldataload(sub(calldatasize(), 2))))
            }
        }
    }
    /// @title Contains 512-bit math functions
    /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
    /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
    library FullMath {
        /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
        /// @param a The multiplicand
        /// @param b The multiplier
        /// @param denominator The divisor
        /// @return result The 256-bit result
        /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
        function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }
            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }
            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);
            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////
            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }
            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = uint256(-int256(denominator)) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }
            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;
            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256
            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
        /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
        /// @param a The multiplicand
        /// @param b The multiplier
        /// @param denominator The divisor
        /// @return result The 256-bit result
        function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
    // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuardUpgradeable is Initializable {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant _NOT_ENTERED = 1;
        uint256 private constant _ENTERED = 2;
        uint256 private _status;
        function __ReentrancyGuard_init() internal onlyInitializing {
            __ReentrancyGuard_init_unchained();
        }
        function __ReentrancyGuard_init_unchained() internal onlyInitializing {
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be _NOT_ENTERED
            require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
            // Any calls to nonReentrant after this point will fail
            _status = _ENTERED;
        }
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = _NOT_ENTERED;
        }
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == _ENTERED;
        }
        /**
         * @dev This empty reserved space is put in place to allow future versions to add new
         * variables without shifting down storage in the inheritance chain.
         * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
         */
        uint256[49] private __gap;
    }
    abstract contract MintingStages is AccessControlUpgradeable, ReentrancyGuardUpgradeable {
        /* ACCESS ROLES */
        bytes32 public constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
        bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
        /* MINTER ROLES */
        bytes32 public constant WL_MINTER_ROLE = keccak256("WL_MINTER_ROLE");
        bytes32 public constant OG_MINTER_ROLE = keccak256("OG_MINTER_ROLE");
        /* OG MINT DETAILS */
        uint256 public ogMintPrice;
        uint256 public ogMintMaxPerUser;
        uint256 public ogMintStart;
        uint256 public ogMintEnd;
        /* WL MINT DETAILS */
        uint256 public whitelistMintPrice;
        uint256 public whitelistMintMaxPerUser;
        uint256 public whitelistMintStart;
        uint256 public whitelistMintEnd;
        /* REGULAR MINT DETAILS*/
        uint256 public mintPrice;
        uint256 public mintMaxPerUser;
        uint256 public mintStart;
        uint256 public mintEnd;
        event UpdateWLevent(address indexed sender, uint256 listLength);
        event UpdateOgEvent(address indexed sender, uint256 listLength);
        modifier OnlyAdminOrOperator() {
            require(hasRole(ADMIN_ROLE, msg.sender) || hasRole(OPERATOR_ROLE, msg.sender), "Only Admin or Operator");
            _;
        }
        /// OG MINTING
        function updateOGMintPrice(uint256 _price) external OnlyAdminOrOperator {
            require(_price > 0, "Invalid price amount");
            ogMintPrice = _price;
        }
        function updateOGMintMax(uint256 _ogMintMax) external OnlyAdminOrOperator {
            require(_ogMintMax > 0, "Invalid max amount");
            ogMintMaxPerUser = _ogMintMax;
        }
        /// WL MINTING
        function updateWhitelistMintPrice(uint256 _whitelistMintPrice) external OnlyAdminOrOperator {
            require(_whitelistMintPrice > 0, "Invalid price amount");
            whitelistMintPrice = _whitelistMintPrice;
        }
        function updateWLMintMax(uint256 _whitelistMintMax) external OnlyAdminOrOperator {
            require(_whitelistMintMax > 0, "Invalid max amount");
            whitelistMintMaxPerUser = _whitelistMintMax;
        }
        // REGULAR MINTING
        function updateMintPrice(uint256 _mintPrice) external OnlyAdminOrOperator {
            require(_mintPrice > 0, "Invalid price amount");
            mintPrice = _mintPrice;
        }
        function updateMintMax(uint256 _mintMax) external OnlyAdminOrOperator {
            require(_mintMax > 0, "Invalid mint amount");
            mintMaxPerUser = _mintMax;
        }
        function updateTime(uint256 _start, uint256 _end) external OnlyAdminOrOperator {
            require(_end > _start, "End not > start");
            mintStart = _start;
            mintEnd = _end;
        }
        /// @param _minterList array of addresses
        /// @param _mintRole 0 = OG, 1 = WL
        /// @dev reverts if any address in the array is address zero
        function updateMinterRoles(address[] calldata _minterList, uint8 _mintRole) public OnlyAdminOrOperator {
            require(_mintRole == 0 || _mintRole == 1, "Error only OG=0,WL=1");
            uint256 minters = _minterList.length;
            if (minters > 0) {
                for (uint256 i; i < minters;) {
                    require(_minterList[i] != address(0x0), "Invalid Address");
                    _mintRole == 0 ? _grantRole(OG_MINTER_ROLE, _minterList[i]) : _grantRole(WL_MINTER_ROLE, _minterList[i]);
                    unchecked {
                        ++i;
                    }
                }
            }
        }
        function encodeNftParams(
            uint256 maxSupply,
            uint256 royaltyFee,
            string memory name,
            string memory symbol,
            string memory initBaseURI
        ) external pure returns (bytes memory _data) {
            _data = abi.encode(maxSupply, royaltyFee, name, symbol, initBaseURI);
        }
    }
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    // ERC721A Contracts v4.2.3
    // Creator: Chiru Labs
    /**
     * @dev Interface of ERC721A.
     */
    interface IERC721A {
        /**
         * The caller must own the token or be an approved operator.
         */
        error ApprovalCallerNotOwnerNorApproved();
        /**
         * The token does not exist.
         */
        error ApprovalQueryForNonexistentToken();
        /**
         * Cannot query the balance for the zero address.
         */
        error BalanceQueryForZeroAddress();
        /**
         * Cannot mint to the zero address.
         */
        error MintToZeroAddress();
        /**
         * The quantity of tokens minted must be more than zero.
         */
        error MintZeroQuantity();
        /**
         * The token does not exist.
         */
        error OwnerQueryForNonexistentToken();
        /**
         * The caller must own the token or be an approved operator.
         */
        error TransferCallerNotOwnerNorApproved();
        /**
         * The token must be owned by `from`.
         */
        error TransferFromIncorrectOwner();
        /**
         * Cannot safely transfer to a contract that does not implement the
         * ERC721Receiver interface.
         */
        error TransferToNonERC721ReceiverImplementer();
        /**
         * Cannot transfer to the zero address.
         */
        error TransferToZeroAddress();
        /**
         * The token does not exist.
         */
        error URIQueryForNonexistentToken();
        /**
         * The `quantity` minted with ERC2309 exceeds the safety limit.
         */
        error MintERC2309QuantityExceedsLimit();
        /**
         * The `extraData` cannot be set on an unintialized ownership slot.
         */
        error OwnershipNotInitializedForExtraData();
        // =============================================================
        //                            STRUCTS
        // =============================================================
        struct TokenOwnership {
            // The address of the owner.
            address addr;
            // Stores the start time of ownership with minimal overhead for tokenomics.
            uint64 startTimestamp;
            // Whether the token has been burned.
            bool burned;
            // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
            uint24 extraData;
        }
        // =============================================================
        //                         TOKEN COUNTERS
        // =============================================================
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() external view returns (uint256);
        // =============================================================
        //                            IERC165
        // =============================================================
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
        // =============================================================
        //                            IERC721
        // =============================================================
        /**
         * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
         */
        event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
         */
        event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
        /**
         * @dev Emitted when `owner` enables or disables
         * (`approved`) `operator` to manage all of its assets.
         */
        event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) external view returns (uint256 balance);
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) external view returns (address owner);
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`,
         * checking first that contract recipients are aware of the ERC721 protocol
         * to prevent tokens from being forever locked.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be have been allowed to move
         * this token by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external payable;
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId) external payable;
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
         * whenever possible.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 tokenId) external payable;
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function approve(address to, uint256 tokenId) external payable;
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool _approved) external;
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) external view returns (address operator);
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) external view returns (bool);
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
        /**
         * @dev Returns the token collection name.
         */
        function name() external view returns (string memory);
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() external view returns (string memory);
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) external view returns (string memory);
        // =============================================================
        //                           IERC2309
        // =============================================================
        /**
         * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
         * (inclusive) is transferred from `from` to `to`, as defined in the
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
         *
         * See {_mintERC2309} for more details.
         */
        event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
    }
    /**
     * @dev Interface of ERC721 token receiver.
     */
    interface ERC721A__IERC721Receiver {
        function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data)
            external
            returns (bytes4);
    }
    /**
     * @title ERC721A
     *
     * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
     * Non-Fungible Token Standard, including the Metadata extension.
     * Optimized for lower gas during batch mints.
     *
     * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
     * starting from `_startTokenId()`.
     *
     * Assumptions:
     *
     * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
     * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
     */
    contract ERC721A is IERC721A {
        // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
        struct TokenApprovalRef {
            address value;
        }
        // =============================================================
        //                           CONSTANTS
        // =============================================================
        // Mask of an entry in packed address data.
        uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
        // The bit position of `numberMinted` in packed address data.
        uint256 private constant _BITPOS_NUMBER_MINTED = 64;
        // The bit position of `numberBurned` in packed address data.
        uint256 private constant _BITPOS_NUMBER_BURNED = 128;
        // The bit position of `aux` in packed address data.
        uint256 private constant _BITPOS_AUX = 192;
        // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
        uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
        // The bit position of `startTimestamp` in packed ownership.
        uint256 private constant _BITPOS_START_TIMESTAMP = 160;
        // The bit mask of the `burned` bit in packed ownership.
        uint256 private constant _BITMASK_BURNED = 1 << 224;
        // The bit position of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
        // The bit mask of the `nextInitialized` bit in packed ownership.
        uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
        // The bit position of `extraData` in packed ownership.
        uint256 private constant _BITPOS_EXTRA_DATA = 232;
        // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
        uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
        // The mask of the lower 160 bits for addresses.
        uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
        // The maximum `quantity` that can be minted with {_mintERC2309}.
        // This limit is to prevent overflows on the address data entries.
        // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
        // is required to cause an overflow, which is unrealistic.
        uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
        // The `Transfer` event signature is given by:
        // `keccak256(bytes("Transfer(address,address,uint256)"))`.
        bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
            0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
        // =============================================================
        //                            STORAGE
        // =============================================================
        // The next token ID to be minted.
        uint256 private _currentIndex;
        // The number of tokens burned.
        uint256 private _burnCounter;
        // Token name
        string private _name;
        // Token symbol
        string private _symbol;
        // Mapping from token ID to ownership details
        // An empty struct value does not necessarily mean the token is unowned.
        // See {_packedOwnershipOf} implementation for details.
        //
        // Bits Layout:
        // - [0..159]   `addr`
        // - [160..223] `startTimestamp`
        // - [224]      `burned`
        // - [225]      `nextInitialized`
        // - [232..255] `extraData`
        mapping(uint256 => uint256) private _packedOwnerships;
        // Mapping owner address to address data.
        //
        // Bits Layout:
        // - [0..63]    `balance`
        // - [64..127]  `numberMinted`
        // - [128..191] `numberBurned`
        // - [192..255] `aux`
        mapping(address => uint256) private _packedAddressData;
        // Mapping from token ID to approved address.
        mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
        // Mapping from owner to operator approvals
        mapping(address => mapping(address => bool)) private _operatorApprovals;
        // =============================================================
        //                          CONSTRUCTOR
        // =============================================================
        function __ERC721A_init(string memory name_, string memory symbol_) internal {
            _name = name_;
            _symbol = symbol_;
            _currentIndex = _startTokenId();
        }
        // =============================================================
        //                   TOKEN COUNTING OPERATIONS
        // =============================================================
        /**
         * @dev Returns the starting token ID.
         * To change the starting token ID, please override this function.
         */
        function _startTokenId() internal view virtual returns (uint256) {
            return 1;
        }
        /**
         * @dev Returns the next token ID to be minted.
         */
        function _nextTokenId() internal view virtual returns (uint256) {
            return _currentIndex;
        }
        /**
         * @dev Returns the total number of tokens in existence.
         * Burned tokens will reduce the count.
         * To get the total number of tokens minted, please see {_totalMinted}.
         */
        function totalSupply() public view virtual override returns (uint256) {
            // Counter underflow is impossible as _burnCounter cannot be incremented
            // more than `_currentIndex - _startTokenId()` times.
            unchecked {
                return _currentIndex - _burnCounter - _startTokenId();
            }
        }
        /**
         * @dev Returns the total amount of tokens minted in the contract.
         */
        function _totalMinted() internal view virtual returns (uint256) {
            // Counter underflow is impossible as `_currentIndex` does not decrement,
            // and it is initialized to `_startTokenId()`.
            unchecked {
                return _currentIndex - _startTokenId();
            }
        }
        /**
         * @dev Returns the total number of tokens burned.
         */
        function _totalBurned() internal view virtual returns (uint256) {
            return _burnCounter;
        }
        // =============================================================
        //                    ADDRESS DATA OPERATIONS
        // =============================================================
        /**
         * @dev Returns the number of tokens in `owner`'s account.
         */
        function balanceOf(address owner) public view virtual override returns (uint256) {
            if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
            return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens minted by `owner`.
         */
        function _numberMinted(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the number of tokens burned by or on behalf of `owner`.
         */
        function _numberBurned(address owner) internal view returns (uint256) {
            return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
        }
        /**
         * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         */
        function _getAux(address owner) internal view returns (uint64) {
            return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
        }
        /**
         * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
         * If there are multiple variables, please pack them into a uint64.
         */
        function _setAux(address owner, uint64 aux) internal virtual {
            uint256 packed = _packedAddressData[owner];
            uint256 auxCasted;
            // Cast `aux` with assembly to avoid redundant masking.
            assembly {
                auxCasted := aux
            }
            packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
            _packedAddressData[owner] = packed;
        }
        // =============================================================
        //                            IERC165
        // =============================================================
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30000 gas.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
            // The interface IDs are constants representing the first 4 bytes
            // of the XOR of all function selectors in the interface.
            // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
            // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
            return interfaceId == 0x01ffc9a7 // ERC165 interface ID for ERC165.
                || interfaceId == 0x80ac58cd // ERC165 interface ID for ERC721.
                || interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
        }
        // =============================================================
        //                        IERC721Metadata
        // =============================================================
        /**
         * @dev Returns the token collection name.
         */
        function name() public view virtual override returns (string memory) {
            return _name;
        }
        /**
         * @dev Returns the token collection symbol.
         */
        function symbol() public view virtual override returns (string memory) {
            return _symbol;
        }
        /**
         * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
         */
        function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
            if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
            string memory baseURI = _baseURI();
            return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : "";
        }
        /**
         * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
         * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
         * by default, it can be overridden in child contracts.
         */
        function _baseURI() internal view virtual returns (string memory) {
            return "";
        }
        // =============================================================
        //                     OWNERSHIPS OPERATIONS
        // =============================================================
        /**
         * @dev Returns the owner of the `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function ownerOf(uint256 tokenId) public view virtual override returns (address) {
            return address(uint160(_packedOwnershipOf(tokenId)));
        }
        /**
         * @dev Gas spent here starts off proportional to the maximum mint batch size.
         * It gradually moves to O(1) as tokens get transferred around over time.
         */
        function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnershipOf(tokenId));
        }
        /**
         * @dev Returns the unpacked `TokenOwnership` struct at `index`.
         */
        function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
            return _unpackedOwnership(_packedOwnerships[index]);
        }
        /**
         * @dev Returns whether the ownership slot at `index` is initialized.
         * An uninitialized slot does not necessarily mean that the slot has no owner.
         */
        function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
            return _packedOwnerships[index] != 0;
        }
        /**
         * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
         */
        function _initializeOwnershipAt(uint256 index) internal virtual {
            if (_packedOwnerships[index] == 0) {
                _packedOwnerships[index] = _packedOwnershipOf(index);
            }
        }
        /**
         * Returns the packed ownership data of `tokenId`.
         */
        function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
            if (_startTokenId() <= tokenId) {
                packed = _packedOwnerships[tokenId];
                // If the data at the starting slot does not exist, start the scan.
                if (packed == 0) {
                    if (tokenId >= _currentIndex) {
                        _revert(OwnerQueryForNonexistentToken.selector);
                    }
                    // Invariant:
                    // There will always be an initialized ownership slot
                    // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                    // before an unintialized ownership slot
                    // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                    // Hence, `tokenId` will not underflow.
                    //
                    // We can directly compare the packed value.
                    // If the address is zero, packed will be zero.
                    for (;;) {
                        unchecked {
                            packed = _packedOwnerships[--tokenId];
                        }
                        if (packed == 0) continue;
                        if (packed & _BITMASK_BURNED == 0) return packed;
                        // Otherwise, the token is burned, and we must revert.
                        // This handles the case of batch burned tokens, where only the burned bit
                        // of the starting slot is set, and remaining slots are left uninitialized.
                        _revert(OwnerQueryForNonexistentToken.selector);
                    }
                }
                // Otherwise, the data exists and we can skip the scan.
                // This is possible because we have already achieved the target condition.
                // This saves 2143 gas on transfers of initialized tokens.
                // If the token is not burned, return `packed`. Otherwise, revert.
                if (packed & _BITMASK_BURNED == 0) return packed;
            }
            _revert(OwnerQueryForNonexistentToken.selector);
        }
        /**
         * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
         */
        function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
            ownership.addr = address(uint160(packed));
            ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
            ownership.burned = packed & _BITMASK_BURNED != 0;
            ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
        }
        /**
         * @dev Packs ownership data into a single uint256.
         */
        function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
                result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
            }
        }
        /**
         * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
         */
        function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
            // For branchless setting of the `nextInitialized` flag.
            assembly {
                // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
                result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
            }
        }
        // =============================================================
        //                      APPROVAL OPERATIONS
        // =============================================================
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
         *
         * Requirements:
         *
         * - The caller must own the token or be an approved operator.
         */
        function approve(address to, uint256 tokenId) public payable virtual override {
            _approve(to, tokenId, true);
        }
        /**
         * @dev Returns the account approved for `tokenId` token.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         */
        function getApproved(uint256 tokenId) public view virtual override returns (address) {
            if (!_exists(tokenId)) {
                _revert(ApprovalQueryForNonexistentToken.selector);
            }
            return _tokenApprovals[tokenId].value;
        }
        /**
         * @dev Approve or remove `operator` as an operator for the caller.
         * Operators can call {transferFrom} or {safeTransferFrom}
         * for any token owned by the caller.
         *
         * Requirements:
         *
         * - The `operator` cannot be the caller.
         *
         * Emits an {ApprovalForAll} event.
         */
        function setApprovalForAll(address operator, bool approved) public virtual override {
            _operatorApprovals[_msgSenderERC721A()][operator] = approved;
            emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
        }
        /**
         * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
            return _operatorApprovals[owner][operator];
        }
        /**
         * @dev Returns whether `tokenId` exists.
         *
         * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
         *
         * Tokens start existing when they are minted. See {_mint}.
         */
        function _exists(uint256 tokenId) internal view virtual returns (bool result) {
            if (_startTokenId() <= tokenId) {
                if (tokenId < _currentIndex) {
                    uint256 packed;
                    while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
                    result = packed & _BITMASK_BURNED == 0;
                }
            }
        }
        /**
         * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
         */
        function _isSenderApprovedOrOwner(address approvedAddress, address owner, address msgSender)
            private
            pure
            returns (bool result)
        {
            assembly {
                // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
                owner := and(owner, _BITMASK_ADDRESS)
                // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
                msgSender := and(msgSender, _BITMASK_ADDRESS)
                // `msgSender == owner || msgSender == approvedAddress`.
                result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
            }
        }
        /**
         * @dev Returns the storage slot and value for the approved address of `tokenId`.
         */
        function _getApprovedSlotAndAddress(uint256 tokenId)
            private
            view
            returns (uint256 approvedAddressSlot, address approvedAddress)
        {
            TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
            // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
            assembly {
                approvedAddressSlot := tokenApproval.slot
                approvedAddress := sload(approvedAddressSlot)
            }
        }
        // =============================================================
        //                      TRANSFER OPERATIONS
        // =============================================================
        /**
         * @dev Transfers `tokenId` from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 tokenId) public payable virtual override {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
            from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
            if (address(uint160(prevOwnershipPacked)) != from) {
                _revert(TransferFromIncorrectOwner.selector);
            }
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) {
                if (!isApprovedForAll(from, _msgSenderERC721A())) {
                    _revert(TransferCallerNotOwnerNorApproved.selector);
                }
            }
            _beforeTokenTransfers(from, to, tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // We can directly increment and decrement the balances.
                --_packedAddressData[from]; // Updates: `balance -= 1`.
                ++_packedAddressData[to]; // Updates: `balance += 1`.
                // Updates:
                // - `address` to the next owner.
                // - `startTimestamp` to the timestamp of transfering.
                // - `burned` to `false`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] =
                    _packOwnershipData(to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked));
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
            uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
            assembly {
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    from, // `from`.
                    toMasked, // `to`.
                    tokenId // `tokenId`.
                )
            }
            if (toMasked == 0) _revert(TransferToZeroAddress.selector);
            _afterTokenTransfers(from, to, tokenId, 1);
        }
        /**
         * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId) public payable virtual override {
            safeTransferFrom(from, to, tokenId, "");
        }
        /**
         * @dev Safely transfers `tokenId` token from `from` to `to`.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `to` cannot be the zero address.
         * - `tokenId` token must exist and be owned by `from`.
         * - If the caller is not `from`, it must be approved to move this token
         * by either {approve} or {setApprovalForAll}.
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
         *
         * Emits a {Transfer} event.
         */
        function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data)
            public
            payable
            virtual
            override
        {
            transferFrom(from, to, tokenId);
            if (to.code.length != 0) {
                if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                    _revert(TransferToNonERC721ReceiverImplementer.selector);
                }
            }
        }
        /**
         * @dev Hook that is called before a set of serially-ordered token IDs
         * are about to be transferred. This includes minting.
         * And also called before burning one token.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _beforeTokenTransfers(address from, address to, uint256 startTokenId, uint256 quantity) internal virtual {}
        /**
         * @dev Hook that is called after a set of serially-ordered token IDs
         * have been transferred. This includes minting.
         * And also called after one token has been burned.
         *
         * `startTokenId` - the first token ID to be transferred.
         * `quantity` - the amount to be transferred.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
         * transferred to `to`.
         * - When `from` is zero, `tokenId` has been minted for `to`.
         * - When `to` is zero, `tokenId` has been burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _afterTokenTransfers(address from, address to, uint256 startTokenId, uint256 quantity) internal virtual {}
        /**
         * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
         *
         * `from` - Previous owner of the given token ID.
         * `to` - Target address that will receive the token.
         * `tokenId` - Token ID to be transferred.
         * `_data` - Optional data to send along with the call.
         *
         * Returns whether the call correctly returned the expected magic value.
         */
        function _checkContractOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
            private
            returns (bool)
        {
            try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
                bytes4 retval
            ) {
                return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    _revert(TransferToNonERC721ReceiverImplementer.selector);
                }
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
        // =============================================================
        //                        MINT OPERATIONS
        // =============================================================
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _mint(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (quantity == 0) _revert(MintZeroQuantity.selector);
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are incredibly unrealistic.
            // `balance` and `numberMinted` have a maximum limit of 2**64.
            // `tokenId` has a maximum limit of 2**256.
            unchecked {
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] =
                    _packOwnershipData(to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0));
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
                if (toMasked == 0) _revert(MintToZeroAddress.selector);
                uint256 end = startTokenId + quantity;
                uint256 tokenId = startTokenId;
                do {
                    assembly {
                        // Emit the `Transfer` event.
                        log4(
                            0, // Start of data (0, since no data).
                            0, // End of data (0, since no data).
                            _TRANSFER_EVENT_SIGNATURE, // Signature.
                            0, // `address(0)`.
                            toMasked, // `to`.
                            tokenId // `tokenId`.
                        )
                    }
                    // The `!=` check ensures that large values of `quantity`
                    // that overflows uint256 will make the loop run out of gas.
                } while (++tokenId != end);
                _currentIndex = end;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Mints `quantity` tokens and transfers them to `to`.
         *
         * This function is intended for efficient minting only during contract creation.
         *
         * It emits only one {ConsecutiveTransfer} as defined in
         * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
         * instead of a sequence of {Transfer} event(s).
         *
         * Calling this function outside of contract creation WILL make your contract
         * non-compliant with the ERC721 standard.
         * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
         * {ConsecutiveTransfer} event is only permissible during contract creation.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `quantity` must be greater than 0.
         *
         * Emits a {ConsecutiveTransfer} event.
         */
        function _mintERC2309(address to, uint256 quantity) internal virtual {
            uint256 startTokenId = _currentIndex;
            if (to == address(0)) _revert(MintToZeroAddress.selector);
            if (quantity == 0) _revert(MintZeroQuantity.selector);
            if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) {
                _revert(MintERC2309QuantityExceedsLimit.selector);
            }
            _beforeTokenTransfers(address(0), to, startTokenId, quantity);
            // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
            unchecked {
                // Updates:
                // - `balance += quantity`.
                // - `numberMinted += quantity`.
                //
                // We can directly add to the `balance` and `numberMinted`.
                _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
                // Updates:
                // - `address` to the owner.
                // - `startTimestamp` to the timestamp of minting.
                // - `burned` to `false`.
                // - `nextInitialized` to `quantity == 1`.
                _packedOwnerships[startTokenId] =
                    _packOwnershipData(to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0));
                emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
                _currentIndex = startTokenId + quantity;
            }
            _afterTokenTransfers(address(0), to, startTokenId, quantity);
        }
        /**
         * @dev Safely mints `quantity` tokens and transfers them to `to`.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement
         * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
         * - `quantity` must be greater than 0.
         *
         * See {_mint}.
         *
         * Emits a {Transfer} event for each mint.
         */
        function _safeMint(address to, uint256 quantity, bytes memory _data) internal virtual {
            _mint(to, quantity);
            unchecked {
                if (to.code.length != 0) {
                    uint256 end = _currentIndex;
                    uint256 index = end - quantity;
                    do {
                        if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                            _revert(TransferToNonERC721ReceiverImplementer.selector);
                        }
                    } while (index < end);
                    // Reentrancy protection.
                    if (_currentIndex != end) _revert(bytes4(0));
                }
            }
        }
        /**
         * @dev Equivalent to `_safeMint(to, quantity, '')`.
         */
        function _safeMint(address to, uint256 quantity) internal virtual {
            _safeMint(to, quantity, "");
        }
        // =============================================================
        //                       APPROVAL OPERATIONS
        // =============================================================
        /**
         * @dev Equivalent to `_approve(to, tokenId, false)`.
         */
        function _approve(address to, uint256 tokenId) internal virtual {
            _approve(to, tokenId, false);
        }
        /**
         * @dev Gives permission to `to` to transfer `tokenId` token to another account.
         * The approval is cleared when the token is transferred.
         *
         * Only a single account can be approved at a time, so approving the
         * zero address clears previous approvals.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits an {Approval} event.
         */
        function _approve(address to, uint256 tokenId, bool approvalCheck) internal virtual {
            address owner = ownerOf(tokenId);
            if (approvalCheck && _msgSenderERC721A() != owner) {
                if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                    _revert(ApprovalCallerNotOwnerNorApproved.selector);
                }
            }
            _tokenApprovals[tokenId].value = to;
            emit Approval(owner, to, tokenId);
        }
        // =============================================================
        //                        BURN OPERATIONS
        // =============================================================
        /**
         * @dev Equivalent to `_burn(tokenId, false)`.
         */
        function _burn(uint256 tokenId) internal virtual {
            _burn(tokenId, false);
        }
        /**
         * @dev Destroys `tokenId`.
         * The approval is cleared when the token is burned.
         *
         * Requirements:
         *
         * - `tokenId` must exist.
         *
         * Emits a {Transfer} event.
         */
        function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
            uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
            address from = address(uint160(prevOwnershipPacked));
            (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
            if (approvalCheck) {
                // The nested ifs save around 20+ gas over a compound boolean condition.
                if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) {
                    if (!isApprovedForAll(from, _msgSenderERC721A())) {
                        _revert(TransferCallerNotOwnerNorApproved.selector);
                    }
                }
            }
            _beforeTokenTransfers(from, address(0), tokenId, 1);
            // Clear approvals from the previous owner.
            assembly {
                if approvedAddress {
                    // This is equivalent to `delete _tokenApprovals[tokenId]`.
                    sstore(approvedAddressSlot, 0)
                }
            }
            // Underflow of the sender's balance is impossible because we check for
            // ownership above and the recipient's balance can't realistically overflow.
            // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
            unchecked {
                // Updates:
                // - `balance -= 1`.
                // - `numberBurned += 1`.
                //
                // We can directly decrement the balance, and increment the number burned.
                // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
                _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
                // Updates:
                // - `address` to the last owner.
                // - `startTimestamp` to the timestamp of burning.
                // - `burned` to `true`.
                // - `nextInitialized` to `true`.
                _packedOwnerships[tokenId] = _packOwnershipData(
                    from,
                    (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
                );
                // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
                if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                    uint256 nextTokenId = tokenId + 1;
                    // If the next slot's address is zero and not burned (i.e. packed value is zero).
                    if (_packedOwnerships[nextTokenId] == 0) {
                        // If the next slot is within bounds.
                        if (nextTokenId != _currentIndex) {
                            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                        }
                    }
                }
            }
            emit Transfer(from, address(0), tokenId);
            _afterTokenTransfers(from, address(0), tokenId, 1);
            // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
            unchecked {
                _burnCounter++;
            }
        }
        // =============================================================
        //                     EXTRA DATA OPERATIONS
        // =============================================================
        /**
         * @dev Directly sets the extra data for the ownership data `index`.
         */
        function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
            uint256 packed = _packedOwnerships[index];
            if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
            uint256 extraDataCasted;
            // Cast `extraData` with assembly to avoid redundant masking.
            assembly {
                extraDataCasted := extraData
            }
            packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
            _packedOwnerships[index] = packed;
        }
        /**
         * @dev Called during each token transfer to set the 24bit `extraData` field.
         * Intended to be overridden by the cosumer contract.
         *
         * `previousExtraData` - the value of `extraData` before transfer.
         *
         * Calling conditions:
         *
         * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
         * transferred to `to`.
         * - When `from` is zero, `tokenId` will be minted for `to`.
         * - When `to` is zero, `tokenId` will be burned by `from`.
         * - `from` and `to` are never both zero.
         */
        function _extraData(address from, address to, uint24 previousExtraData) internal view virtual returns (uint24) {}
        /**
         * @dev Returns the next extra data for the packed ownership data.
         * The returned result is shifted into position.
         */
        function _nextExtraData(address from, address to, uint256 prevOwnershipPacked) private view returns (uint256) {
            uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
            return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
        }
        // =============================================================
        //                       OTHER OPERATIONS
        // =============================================================
        /**
         * @dev Returns the message sender (defaults to `msg.sender`).
         *
         * If you are writing GSN compatible contracts, you need to override this function.
         */
        function _msgSenderERC721A() internal view virtual returns (address) {
            return msg.sender;
        }
        /**
         * @dev Converts a uint256 to its ASCII string decimal representation.
         */
        function _toString(uint256 value) internal pure virtual returns (string memory str) {
            assembly {
                // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                // We will need 1 word for the trailing zeros padding, 1 word for the length,
                // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
                let m := add(mload(0x40), 0xa0)
                // Update the free memory pointer to allocate.
                mstore(0x40, m)
                // Assign the `str` to the end.
                str := sub(m, 0x20)
                // Zeroize the slot after the string.
                mstore(str, 0)
                // Cache the end of the memory to calculate the length later.
                let end := str
                // We write the string from rightmost digit to leftmost digit.
                // The following is essentially a do-while loop that also handles the zero case.
                // prettier-ignore
                for { let temp := value } 1 {} {
                    str := sub(str, 1)
                    // Write the character to the pointer.
                    // The ASCII index of the '0' character is 48.
                    mstore8(str, add(48, mod(temp, 10)))
                    // Keep dividing `temp` until zero.
                    temp := div(temp, 10)
                    // prettier-ignore
                    if iszero(temp) { break }
                }
                let length := sub(end, str)
                // Move the pointer 32 bytes leftwards to make room for the length.
                str := sub(str, 0x20)
                // Store the length.
                mstore(str, length)
            }
        }
        /**
         * @dev For more efficient reverts.
         */
        function _revert(bytes4 errorSelector) internal pure {
            assembly {
                mstore(0x00, errorSelector)
                revert(0x00, 0x04)
            }
        }
    }
    //
    // ███╗   ███╗ ██████╗  ██████╗ ███╗   ██╗██╗   ██╗███████╗██████╗  █████╗
    // ████╗ ████║██╔═══██╗██╔═══██╗████╗  ██║██║   ██║██╔════╝██╔══██╗██╔══██╗
    // ██╔████╔██║██║   ██║██║   ██║██╔██╗ ██║██║   ██║█████╗  ██████╔╝███████║
    // ██║╚██╔╝██║██║   ██║██║   ██║██║╚██╗██║╚██╗ ██╔╝██╔══╝  ██╔══██╗██╔══██║
    // ██║ ╚═╝ ██║╚██████╔╝╚██████╔╝██║ ╚████║ ╚████╔╝ ███████╗██║  ██║██║  ██║
    // ╚═╝     ╚═╝ ╚═════╝  ╚═════╝ ╚═╝  ╚═══╝  ╚═══╝  ╚══════╝╚═╝  ╚═╝╚═╝  ╚═╝
    //
    /// @title Art Collection ERC721A Upgradable
    /// @notice This contract is made only for the Arab Collectors Club ACC
    /// @author MoonveraLabs
    contract MvxCollection is Clone, ERC721A, IERC2981, MintingStages {
        string public baseURI;
        string public baseExtension;
        uint256 public maxSupply;
        uint96 public platformFee; // basis points
        address private platformFeeReceiver;
        struct RoyaltyInfo {
            address receiver;
            uint96 royaltyFraction;
        }
        RoyaltyInfo public royaltyData;
        // Cap number of mint per user
        mapping(address => uint256) public mintsPerWallet;
        event WithdrawEvent(
            address indexed sender, uint256 balanceAfterFee, address platformFeeReceiver, uint256 platformFee
        );
        event OGmintEvent(address indexed sender, uint256 value, address to, uint256 amount, uint256 _ogMintPrice);
        event WLmintEvent(address indexed sender, uint256 value, address to, uint256 amount, uint256 wlMintPrice);
        event MintEvent(address indexed sender, uint256 value, address to, uint256 amount, uint256 mintPrice);
        event OwnerMintEvent(address indexed sender, address to, uint256 amount);
        event RoyaltyFeeUpdate(address indexed sender, address receiver, uint96 royaltyFee);
        event BurnEvent(address indexed sender, uint256 tokenId);
        /// @notice Called by MvxFactory on Deployment
        /// @param _platformFee description
        /// @param _nftData description
        /// @param _initialOGMinters description
        /// @param _initialWLMinters description
        /// @param _mintingStages description
        function initialize(
            uint96 _platformFee,
            bytes calldata _nftData,
            address[] calldata _initialOGMinters,
            address[] calldata _initialWLMinters,
            uint256[] calldata _mintingStages
        ) public initializer {
            (uint256 _maxSupply, uint96 _royaltyFee, string memory _name, string memory _symbol, string memory _initBaseURI)
            = abi.decode(_nftData, (uint256, uint96, string, string, string));
            __ERC721A_init(_name, _symbol);
            __AccessControl_init();
            _setRoleAdmin(ADMIN_ROLE, ADMIN_ROLE);
            // Granting Admin to MvxFactory to be able to grant roles for user
            // since user is not msg.sender, but revoking at the end of function
            // Trade-off to manage minting roles with OZ AccessControl  
                
            // ADMIN is onlyOwner that can add OPERATORS
            _grantRole(ADMIN_ROLE, msg.sender); // not caching due to Stack error
            platformFeeReceiver = msg.sender;
            // immutable arguments set at clone deployment, storage slot 0 always = collection owner/admin
            _grantRole(ADMIN_ROLE, _getArgAddress(0));
            _updateRoyaltyInfo(_getArgAddress(0), _royaltyFee);
            _setRoleAdmin(OG_MINTER_ROLE, ADMIN_ROLE); // set ADMIN_ROLE as admin of OG's
            _setRoleAdmin(WL_MINTER_ROLE, ADMIN_ROLE); // set ADMIN_ROLE as admin of WL's
            baseURI = _initBaseURI;
            baseExtension = ".json";
            maxSupply = _maxSupply;
            // OG minting stage details
            ogMintPrice = _mintingStages[0];
            ogMintMaxPerUser = _mintingStages[1];
            ogMintStart = _mintingStages[2];
            ogMintEnd = _mintingStages[3];
            // WL minting stage details
            whitelistMintPrice = _mintingStages[4];
            whitelistMintMaxPerUser = _mintingStages[5];
            whitelistMintStart = _mintingStages[6];
            whitelistMintEnd = _mintingStages[7];
            // Regular minting stage details
            mintPrice = _mintingStages[8];
            mintMaxPerUser = _mintingStages[9];
            mintStart = _mintingStages[10];
            mintEnd = _mintingStages[11];
            // init minting roles OG=0, WL=1
            updateMinterRoles(_initialOGMinters, 0);
            updateMinterRoles(_initialWLMinters, 1);
            require(_platformFee < _feeDenominator(), "Invalid PF");
            platformFee = _platformFee;
            // revoke ADMIN_ROLE to MvxFactory, ADMIN is the OWNER of collection
            revokeRole(ADMIN_ROLE, platformFeeReceiver);
        }
        /// @notice access: ADMIN_ROLE
        /// @param _to address to mint to
        /// @param _amount amount to mint (batch minting)
        function mintForOwner(address _to, uint256 _amount) external payable nonReentrant OnlyAdminOrOperator {
            require(totalSupply() + _amount <= maxSupply, "Over mintMax error");
            _safeMint(_to, _amount);
            emit OwnerMintEvent(msg.sender, _to, _amount);
        }
        /// @notice access: OG_MINTER_ROLE
        /// @param _to address to mint to
        /// @param _amount amount to mint (batch minting)
        function mintForOG(address _to, uint256 _amount) external payable nonReentrant onlyRole(OG_MINTER_ROLE) {
            uint256 _currentTime = block.timestamp;
            require(_currentTime <= ogMintEnd && _currentTime >= ogMintStart, "Not OG mint time");
            require(totalSupply() + _amount <= maxSupply, "Over mintMax error");
            _internalSafeMint(msg.value, _to, ogMintPrice, _amount, ogMintMaxPerUser);
            emit OGmintEvent(msg.sender, msg.value, _to, _amount, ogMintPrice);
        }
        /// @notice access: WL_MINTER_ROLE
        /// @param _to address to mint to
        /// @param _amount amount to mint (batch minting)
        function mintForWhitelist(address _to, uint256 _amount) external payable onlyRole(WL_MINTER_ROLE) nonReentrant {
            uint256 _currentTime = block.timestamp;
            require(_currentTime <= whitelistMintEnd && _currentTime >= whitelistMintStart, "Not OG mint time");
            require(totalSupply() + _amount <= maxSupply, "Over mintMax error");
            _internalSafeMint(msg.value, _to, whitelistMintPrice, _amount, whitelistMintMaxPerUser);
            emit WLmintEvent(msg.sender, msg.value, _to, _amount, whitelistMintPrice);
        }
        /// @notice access: any
        /// @param _to address to mint to
        /// @param _amount amount to mint (batch minting)
        function mintForRegular(address _to, uint256 _amount) external payable nonReentrant {
            uint256 _currentTime = block.timestamp;
            require(_currentTime <= mintEnd && _currentTime >= mintStart, "Not Regular minTime");
            require(totalSupply() + _amount <= maxSupply, "Over mintMax error");
            _internalSafeMint(msg.value, _to, mintPrice, _amount, mintMaxPerUser);
            emit MintEvent(msg.sender, msg.value, _to, _amount, mintPrice);
        }
        /// @notice Checks for ether sent to this contract before calling _safeMint
        function _internalSafeMint(
            uint256 _msgValue,
            address _mintTo,
            uint256 _mintPrice,
            uint256 _mintAmount,
            uint256 _maxMintAmount
        ) internal {
            require(mintsPerWallet[msg.sender] + _mintAmount <= _maxMintAmount, "Exceeds maxMint");
            require(_msgValue >= (_mintAmount * _mintPrice), "Insufficient mint payment");
            unchecked {
                mintsPerWallet[msg.sender] += _mintAmount;
            }
            _safeMint(_mintTo, _mintAmount);
        }
        /// @notice access: only ADMIN ROLE
        function updateRoyaltyInfo(address _receiver, uint96 _royaltyFee) external onlyRole(ADMIN_ROLE) {
            _updateRoyaltyInfo(_receiver, _royaltyFee);
            emit RoyaltyFeeUpdate(msg.sender, _receiver, _royaltyFee);
        }
        function _updateRoyaltyInfo(address _receiver, uint96 _royaltyFee) internal {
            require(_royaltyFee <= _feeDenominator(), "ERC2981: fee exceed salePrice");
            require(_receiver != address(0), "ERC2981: invalid receiver");
            royaltyData = RoyaltyInfo(_receiver, _royaltyFee);
        }
        // @dev Inherits IERC2981
        function royaltyInfo(uint256 tokenId, uint256 _salePrice) external view override returns (address, uint256) {
            return (royaltyData.receiver, (_salePrice * royaltyData.royaltyFraction) / _feeDenominator());
        }
        /// @notice The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
        /// fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
        /// override.
        function _feeDenominator() internal pure virtual returns (uint96) {
            return 10_000;
        }
        function tokenURI(uint256 _tokenId) public view virtual override returns (string memory) {
            require(_exists(_tokenId), "ERC721Metadata: URI query for nonexistent token");
            string memory current_baseURI = baseURI;
            return bytes(baseURI).length > 0
                ? string(abi.encodePacked(current_baseURI, _toString(_tokenId), baseExtension))
                : "";
        }
        function setBaseURI(string memory _newBaseURI) public {
            baseURI = _newBaseURI;
        }
        function getMintCountOf(address _user) public view returns (uint256) {
            return mintsPerWallet[_user];
        }
        function setBaseExtension(string memory _newBaseExtension) public {
            baseExtension = _newBaseExtension;
        }
        function burn(uint256 _tokenId) external {
            require(ownerOf(_tokenId) == msg.sender, "Not Owner");
            _burn(_tokenId);
            emit BurnEvent(_msgSender(), _tokenId);
        }
        /// @notice only ADMIN access withdraw royalties
        function withdraw() external payable nonReentrant onlyRole(ADMIN_ROLE) {
            require(platformFeeReceiver != address(0x0), "Address Zero");
            uint256 _balance = address(this).balance;
            uint256 _platformFee = _balance * platformFee / _feeDenominator();
            uint256 _balanceAfterFee = _balance - _platformFee;
            (bool feeSent,) = payable(platformFeeReceiver).call{value: _platformFee}("");
            require(feeSent, "Withdraw _platformFee fail");
            (bool sent,) = payable(msg.sender).call{value: _balanceAfterFee}("");
            require(sent, "Withdraw _balanceAfterFee fail");
            emit WithdrawEvent(msg.sender, _balanceAfterFee, platformFeeReceiver, _platformFee);
        }
        function supportsInterface(bytes4 _interfaceId)
            public
            view
            override(ERC721A, AccessControlUpgradeable,IERC165)
            returns (bool)
        {
            return _interfaceId == type(IERC721A).interfaceId || _interfaceId == type(IERC2981).interfaceId
                || super.supportsInterface(_interfaceId);
        }
        function version() external pure returns (uint8 _version) {
            _version = 1;
        }
    }