ETH Price: $1,975.77 (+0.69%)

Transaction Decoder

Block:
22411187 at May-04-2025 03:08:23 PM +UTC
Transaction Fee:
0.00023295138632871 ETH $0.46
Gas Used:
98,742 Gas / 2.359192505 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x32cC848A...3b0a858D0
0.002678419492878727 Eth
Nonce: 222
0.002445468106550017 Eth
Nonce: 223
0.00023295138632871
(quasarbuilder)
12.497107368539956184 Eth12.497304852539956184 Eth0.000197484

Execution Trace

Proxy.4870496f( )
  • OptimismPortal.proveWithdrawalTransaction( _tx=[{name:nonce, type:uint256, order:1, indexed:false, value:1766847064778384329583297500742918515827483896875618958121606201292632232, valueString:1766847064778384329583297500742918515827483896875618958121606201292632232}, {name:sender, type:address, order:2, indexed:false, value:0x32cC848Ad4681ceD8AF9Dc1Fb0d0D0F3b0a858D0, valueString:0x32cC848Ad4681ceD8AF9Dc1Fb0d0D0F3b0a858D0}, {name:target, type:address, order:3, indexed:false, value:0x32cC848Ad4681ceD8AF9Dc1Fb0d0D0F3b0a858D0, valueString:0x32cC848Ad4681ceD8AF9Dc1Fb0d0D0F3b0a858D0}, {name:value, type:uint256, order:4, indexed:false, value:142476000000000000000000, valueString:142476000000000000000000}, {name:gasLimit, type:uint256, order:5, indexed:false, value:200000, valueString:200000}, {name:data, type:bytes, order:6, indexed:false, value:0x, valueString:0x}], _l2OutputIndex=610, _outputRootProof=[{name:version, type:bytes32, order:1, indexed:false, value:0000000000000000000000000000000000000000000000000000000000000000, valueString:0000000000000000000000000000000000000000000000000000000000000000}, {name:stateRoot, type:bytes32, order:2, indexed:false, value:5F3DAEA08BD1D408AFF13B685190805CC7E4474DCCDC474388BE3B99ED5FB098, valueString:5F3DAEA08BD1D408AFF13B685190805CC7E4474DCCDC474388BE3B99ED5FB098}, {name:messagePasserStorageRoot, type:bytes32, order:3, indexed:false, value:6F4F9341F1FE3077CB538DD8DC546F4867F77A0345BDDA0D46C181A8C7CA0FC2, valueString:6F4F9341F1FE3077CB538DD8DC546F4867F77A0345BDDA0D46C181A8C7CA0FC2}, {name:latestBlockhash, type:bytes32, order:4, indexed:false, value:E16AE315126F1C73B8729A089A6D9BA09CD5E3F135B000016F74FB21363A2F2D, valueString:E16AE315126F1C73B8729A089A6D9BA09CD5E3F135B000016F74FB21363A2F2D}], _withdrawalProof=[+QIRoAIox6PlIsCr+RGJmVGj5dsISDqaQyESJkL1Dhw03jhzoIXYOSfnY1YNprEvSVQQrq4p609wRVZi5HUQ7It/4OLqoDXk12N7vOL7t689T1dFm8CnleOJUoTfCuRLPUcbHS/eoNPAJI4pgnVzzY1WMJYC8saOkRcpR0LJ7x982rkC1KX9oLm0oEdaLnE4RFjyBrpKCXKBf7fXHQSRNzX+ARw5KZNwoP0LEN3xi3VsdNuFO8jBujfktK+ol1k76XmsSenFiNdeoNxVb71xcNaSRcAO07iCLdjX7fPatfOAs34kTTduYJQaoNSfA5/rtWtt8Em6Mcj5tWFImwrLUGV67bfbjC+X7U/doPIgbE3VL097Fi0O0tE749jHGUM8HHn8RaW7j7L7nNtWoJftF6mDc2Woabd2UzcsF0PX7SjCBfuYyl2XL6E3bayvoHv7Mf266N5MBT11suyavWcBxC7vOpUQ96sJ+iTIWtH9oLmZCiPBHIjmd7Wtxt7/acgSlM6ridcB2/hXKuKE1RpDoD2ITPB9fVYduxK1FEdJSqxVYHrXCMIr1tXuYueJm5LIoP7iSeka/nPvvqMV4NKYcTQ/1DvRBqNZnPPAvADtHH8koM6wpJ4yhCzu7wBCD5SitS7jbW57vtPhI7v8+jl4EZvMoJXdLBxTRMjjXQdkxvevosLrf21Ojy5G1n84hpc/91n/gA==, +QIRoGnBOvKlBMRsvfZ/2TOLnzn8q1ky1m2D+2BRwskQmz2ioBgh1skeN9p/n8PZIJ3xQKDlE/U6k8AVjzlQk7NtZUTqoANwmvMGX43MbvR3ZiA5SAtCplh47KHS9wal/yYotuNuoPFUPkQcTlF5s3FC8KeWkNQZ+VogldIp/bWWmKeKDhFvoL9v9oyjeXQEjBhBXQVI1pgvLP3QG+2g/fJ5QvoR4XKXoLvZLgv9ICzXBHIKqk3d8ZzARzL4NwYx9swqXICWp27GoEemZ8qhnwqICnwG3qvlFIqQ2DU1SwlOPTtgAgwjbuduoGE08RoIdnAa/rJ4wC8/Je5fGkztDyBNtpr9MrYauX52oDtP1AU8YKTnKENwRFbouNt9Mtd7n6YL3O/n1NDykGRxoGSBi6LG5HoK7N3LblHlbpsAAJE5HEGl7MyzxhkKPbOpoEWVHBfSYAEmG5Daul/Nz+cztY4WRovIdT5G/sJAUTHkoJleUDm9fVJ0iACvUnwZlGy+b1FLRssksnDuM0Ush4/soF+/pWNC0wN4YnpfV+LPFOIGRVqfKVXjxxzlxPC1iKPKoHVqWjl//cixE5OegNBQCSzMbZA/GVHPberNi8QmvwaRoP2vMttmRNJ6KoPv+qvxJXCuH6pJrxYd82ytpq0Za+fpoDkm/gAsK/jaFSnYqUzgd3k0Omt/cP+mfCj50pKuJKBkgA==, +QIRoClP+C9iMHBdXoJucVvZ+qyjL7Li/pm74IYDHygZAW4joAvGVc4UT/j+eDF2KkSlRZrC2JT5yh23im5yNmTYVVr7oKKg8D1LCAKLAPXxOBBoHKLv+mUe4E9W9BXP/4uA4nltoFGYXQXq1eEMeUYXuorV6gBJVvrWgI7F/yC9Dr7UbfxioIoVU8eXP/q4+VLHbNu1gC+OHuBT9bOxOw5/ovmvQBtOoGsql4pLFBzQYDiw/yzMb76xWyaNyQul9uXm+x40kBFpoPONaKwvcMHWoOCMETVQH6kM31lb1wDUEynPEi97Vb1XoPMsAzkY1DovdBkM2lYben8rSjI35BkbDEREah6YwvrzoAL29gE5ddRUrCF0AY19dKYCEfzAmR6KnBDdQ+78XRzDoMcQfqUwdNYEhbY++KvSuxwTML1zUIwrCnDTrP8XJYuQoFi8bbyZ0TokDRRhKAVDTloNkvKZWSkdPgaHQKV+mfK/oCpCWXLi6ZGtPJOsuSN9hpdrfJ6vZqf/ZxMBxXaFu1cwoGWRaBpBNVLD9F8a3K0Qn7j4I0yt2L/HIP447xHF1L3UoEfb5vo6Eba3Ay24wwbKtYHQdrim557Ob825fR9la1DgoL8Ofg2QBhKMIeCNPZGxE83FjyOR+6NGfEU6Ey/3elaUoCvGACLLQVWvRNH/GHciey/zjA7MF24OWvusGRa0YBi8gA==, +FGAoFDkX0uj/MndSrqq08nMKE7Ffo2mPk2C6NLZhIUfMDOqoC/4cE+XG5z2MDcEQheaNYXsw19eKSSLbHmS/PPyYwV0gICAgICAgICAgICAgIA=, 4Z8g8kXZLV9fIbrE2ws90PdDTsbmGzPE7OUm3QAyI88zAQ==] )
    • Proxy.STATICCALL( )
      • SuperchainConfig.DELEGATECALL( )
      • Proxy.a25ae557( )
        • L2OutputOracle.getL2Output( _l2OutputIndex=610 ) => ( [{name:outputRoot, type:bytes32, order:1, indexed:false, value:AD45B8940C806E024C82241686274DCEAB940EE86C853CBF36C7A6946EAE9FA5, valueString:AD45B8940C806E024C82241686274DCEAB940EE86C853CBF36C7A6946EAE9FA5}, {name:timestamp, type:uint128, order:2, indexed:false, value:1746335639, valueString:1746335639}, {name:l2BlockNumber, type:uint128, order:3, indexed:false, value:6598800, valueString:6598800}] )
        • Proxy.a25ae557( )
          • L2OutputOracle.getL2Output( _l2OutputIndex=610 ) => ( [{name:outputRoot, type:bytes32, order:1, indexed:false, value:AD45B8940C806E024C82241686274DCEAB940EE86C853CBF36C7A6946EAE9FA5, valueString:AD45B8940C806E024C82241686274DCEAB940EE86C853CBF36C7A6946EAE9FA5}, {name:timestamp, type:uint128, order:2, indexed:false, value:1746335639, valueString:1746335639}, {name:l2BlockNumber, type:uint128, order:3, indexed:false, value:6598800, valueString:6598800}] )
            File 1 of 6: Proxy
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Constants } from "../libraries/Constants.sol";
            /// @title Proxy
            /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
            ///         if the caller is address(0), meaning that the call originated from an off-chain
            ///         simulation.
            contract Proxy {
                /// @notice An event that is emitted each time the implementation is changed. This event is part
                ///         of the EIP-1967 specification.
                /// @param implementation The address of the implementation contract
                event Upgraded(address indexed implementation);
                /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                ///         EIP-1967 specification.
                /// @param previousAdmin The previous owner of the contract
                /// @param newAdmin      The new owner of the contract
                event AdminChanged(address previousAdmin, address newAdmin);
                /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                ///         eth_call to interact with this proxy without needing to use low-level storage
                ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                ///         normal EVM execution.
                modifier proxyCallIfNotAdmin() {
                    if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                        _;
                    } else {
                        // This WILL halt the call frame on completion.
                        _doProxyCall();
                    }
                }
                /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                ///         EIP-1967 admin storage slot so that accidental storage collision with the
                ///         implementation is not possible.
                /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                ///               transparent proxy interface.
                constructor(address _admin) {
                    _changeAdmin(_admin);
                }
                // slither-disable-next-line locked-ether
                receive() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                // slither-disable-next-line locked-ether
                fallback() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                /// @notice Set the implementation contract address. The code at the given address will execute
                ///         when this contract is called.
                /// @param _implementation Address of the implementation contract.
                function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                    _setImplementation(_implementation);
                }
                /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                ///         atomic execution of initialization-based upgrades.
                /// @param _implementation Address of the implementation contract.
                /// @param _data           Calldata to delegatecall the new implementation with.
                function upgradeToAndCall(
                    address _implementation,
                    bytes calldata _data
                )
                    public
                    payable
                    virtual
                    proxyCallIfNotAdmin
                    returns (bytes memory)
                {
                    _setImplementation(_implementation);
                    (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                    require(success, "Proxy: delegatecall to new implementation contract failed");
                    return returndata;
                }
                /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                /// @param _admin New owner of the proxy contract.
                function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                    _changeAdmin(_admin);
                }
                /// @notice Gets the owner of the proxy contract.
                /// @return Owner address.
                function admin() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getAdmin();
                }
                //// @notice Queries the implementation address.
                /// @return Implementation address.
                function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getImplementation();
                }
                /// @notice Sets the implementation address.
                /// @param _implementation New implementation address.
                function _setImplementation(address _implementation) internal {
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        sstore(proxyImplementation, _implementation)
                    }
                    emit Upgraded(_implementation);
                }
                /// @notice Changes the owner of the proxy contract.
                /// @param _admin New owner of the proxy contract.
                function _changeAdmin(address _admin) internal {
                    address previous = _getAdmin();
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        sstore(proxyOwner, _admin)
                    }
                    emit AdminChanged(previous, _admin);
                }
                /// @notice Performs the proxy call via a delegatecall.
                function _doProxyCall() internal {
                    address impl = _getImplementation();
                    require(impl != address(0), "Proxy: implementation not initialized");
                    assembly {
                        // Copy calldata into memory at 0x0....calldatasize.
                        calldatacopy(0x0, 0x0, calldatasize())
                        // Perform the delegatecall, make sure to pass all available gas.
                        let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                        // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                        // overwrite the calldata that we just copied into memory but that doesn't really
                        // matter because we'll be returning in a second anyway.
                        returndatacopy(0x0, 0x0, returndatasize())
                        // Success == 0 means a revert. We'll revert too and pass the data up.
                        if iszero(success) { revert(0x0, returndatasize()) }
                        // Otherwise we'll just return and pass the data up.
                        return(0x0, returndatasize())
                    }
                }
                /// @notice Queries the implementation address.
                /// @return Implementation address.
                function _getImplementation() internal view returns (address) {
                    address impl;
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        impl := sload(proxyImplementation)
                    }
                    return impl;
                }
                /// @notice Queries the owner of the proxy contract.
                /// @return Owner address.
                function _getAdmin() internal view returns (address) {
                    address owner;
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        owner := sload(proxyOwner)
                    }
                    return owner;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "../L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "../libraries/Burn.sol";
            import { Arithmetic } from "../libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }
            

            File 2 of 6: OptimismPortal
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { SafeCall } from "src/libraries/SafeCall.sol";
            import { L2OutputOracle } from "src/L1/L2OutputOracle.sol";
            import { SystemConfig } from "src/L1/SystemConfig.sol";
            import { SuperchainConfig } from "src/L1/SuperchainConfig.sol";
            import { Constants } from "src/libraries/Constants.sol";
            import { Types } from "src/libraries/Types.sol";
            import { Hashing } from "src/libraries/Hashing.sol";
            import { SecureMerkleTrie } from "src/libraries/trie/SecureMerkleTrie.sol";
            import { AddressAliasHelper } from "src/vendor/AddressAliasHelper.sol";
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
            import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
            import { L1Block } from "src/L2/L1Block.sol";
            import { Predeploys } from "src/libraries/Predeploys.sol";
            import "src/libraries/PortalErrors.sol";
            /// @custom:proxied
            /// @title OptimismPortal
            /// @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
            ///         and L2. Messages sent directly to the OptimismPortal have no form of replayability.
            ///         Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
            contract OptimismPortal is Initializable, ResourceMetering, ISemver {
                /// @notice Allows for interactions with non standard ERC20 tokens.
                using SafeERC20 for IERC20;
                /// @notice Represents a proven withdrawal.
                /// @custom:field outputRoot    Root of the L2 output this was proven against.
                /// @custom:field timestamp     Timestamp at whcih the withdrawal was proven.
                /// @custom:field l2OutputIndex Index of the output this was proven against.
                struct ProvenWithdrawal {
                    bytes32 outputRoot;
                    uint128 timestamp;
                    uint128 l2OutputIndex;
                }
                /// @notice Version of the deposit event.
                uint256 internal constant DEPOSIT_VERSION = 0;
                /// @notice The L2 gas limit set when eth is deposited using the receive() function.
                uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
                /// @notice The L2 gas limit for system deposit transactions that are initiated from L1.
                uint32 internal constant SYSTEM_DEPOSIT_GAS_LIMIT = 200_000;
                /// @notice Address of the L2 account which initiated a withdrawal in this transaction.
                ///         If the of this variable is the default L2 sender address, then we are NOT inside of
                ///         a call to finalizeWithdrawalTransaction.
                address public l2Sender;
                /// @notice A list of withdrawal hashes which have been successfully finalized.
                mapping(bytes32 => bool) public finalizedWithdrawals;
                /// @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
                mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
                /// @custom:legacy
                /// @custom:spacer paused
                /// @notice Spacer for backwards compatibility.
                bool private spacer_53_0_1;
                /// @notice Contract of the Superchain Config.
                SuperchainConfig public superchainConfig;
                /// @notice Contract of the L2OutputOracle.
                /// @custom:network-specific
                L2OutputOracle public l2Oracle;
                /// @notice Contract of the SystemConfig.
                /// @custom:network-specific
                SystemConfig public systemConfig;
                /// @custom:spacer disputeGameFactory
                /// @notice Spacer for backwards compatibility.
                address private spacer_56_0_20;
                /// @custom:spacer provenWithdrawals
                /// @notice Spacer for backwards compatibility.
                bytes32 private spacer_57_0_32;
                /// @custom:spacer disputeGameBlacklist
                /// @notice Spacer for backwards compatibility.
                bytes32 private spacer_58_0_32;
                /// @custom:spacer respectedGameType + respectedGameTypeUpdatedAt
                /// @notice Spacer for backwards compatibility.
                bytes32 private spacer_59_0_32;
                /// @custom:spacer proofSubmitters
                /// @notice Spacer for backwards compatibility.
                bytes32 private spacer_60_0_32;
                /// @notice Represents the amount of native asset minted in L2. This may not
                ///         be 100% accurate due to the ability to send ether to the contract
                ///         without triggering a deposit transaction. It also is used to prevent
                ///         overflows for L2 account balances when custom gas tokens are used.
                ///         It is not safe to trust `ERC20.balanceOf` as it may lie.
                uint256 internal _balance;
                /// @notice Emitted when a transaction is deposited from L1 to L2.
                ///         The parameters of this event are read by the rollup node and used to derive deposit
                ///         transactions on L2.
                /// @param from       Address that triggered the deposit transaction.
                /// @param to         Address that the deposit transaction is directed to.
                /// @param version    Version of this deposit transaction event.
                /// @param opaqueData ABI encoded deposit data to be parsed off-chain.
                event TransactionDeposited(address indexed from, address indexed to, uint256 indexed version, bytes opaqueData);
                /// @notice Emitted when a withdrawal transaction is proven.
                /// @param withdrawalHash Hash of the withdrawal transaction.
                /// @param from           Address that triggered the withdrawal transaction.
                /// @param to             Address that the withdrawal transaction is directed to.
                event WithdrawalProven(bytes32 indexed withdrawalHash, address indexed from, address indexed to);
                /// @notice Emitted when a withdrawal transaction is finalized.
                /// @param withdrawalHash Hash of the withdrawal transaction.
                /// @param success        Whether the withdrawal transaction was successful.
                event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
                /// @notice Reverts when paused.
                modifier whenNotPaused() {
                    if (paused()) revert CallPaused();
                    _;
                }
                /// @notice Semantic version.
                /// @custom:semver 2.8.1-beta.1
                function version() public pure virtual returns (string memory) {
                    return "2.8.1-beta.1";
                }
                /// @notice Constructs the OptimismPortal contract.
                constructor() {
                    initialize({
                        _l2Oracle: L2OutputOracle(address(0)),
                        _systemConfig: SystemConfig(address(0)),
                        _superchainConfig: SuperchainConfig(address(0))
                    });
                }
                /// @notice Initializer.
                /// @param _l2Oracle Contract of the L2OutputOracle.
                /// @param _systemConfig Contract of the SystemConfig.
                /// @param _superchainConfig Contract of the SuperchainConfig.
                function initialize(
                    L2OutputOracle _l2Oracle,
                    SystemConfig _systemConfig,
                    SuperchainConfig _superchainConfig
                )
                    public
                    initializer
                {
                    l2Oracle = _l2Oracle;
                    systemConfig = _systemConfig;
                    superchainConfig = _superchainConfig;
                    if (l2Sender == address(0)) {
                        l2Sender = Constants.DEFAULT_L2_SENDER;
                    }
                    __ResourceMetering_init();
                }
                /// @notice Getter for the balance of the contract.
                function balance() public view returns (uint256) {
                    (address token,) = gasPayingToken();
                    if (token == Constants.ETHER) {
                        return address(this).balance;
                    } else {
                        return _balance;
                    }
                }
                /// @notice Getter function for the address of the guardian.
                ///         Public getter is legacy and will be removed in the future. Use `SuperchainConfig.guardian()` instead.
                /// @return Address of the guardian.
                /// @custom:legacy
                function guardian() public view returns (address) {
                    return superchainConfig.guardian();
                }
                /// @notice Getter for the current paused status.
                /// @return paused_ Whether or not the contract is paused.
                function paused() public view returns (bool paused_) {
                    paused_ = superchainConfig.paused();
                }
                /// @notice Computes the minimum gas limit for a deposit.
                ///         The minimum gas limit linearly increases based on the size of the calldata.
                ///         This is to prevent users from creating L2 resource usage without paying for it.
                ///         This function can be used when interacting with the portal to ensure forwards
                ///         compatibility.
                /// @param _byteCount Number of bytes in the calldata.
                /// @return The minimum gas limit for a deposit.
                function minimumGasLimit(uint64 _byteCount) public pure returns (uint64) {
                    return _byteCount * 16 + 21000;
                }
                /// @notice Accepts value so that users can send ETH directly to this contract and have the
                ///         funds be deposited to their address on L2. This is intended as a convenience
                ///         function for EOAs. Contracts should call the depositTransaction() function directly
                ///         otherwise any deposited funds will be lost due to address aliasing.
                receive() external payable {
                    depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
                }
                /// @notice Accepts ETH value without triggering a deposit to L2.
                ///         This function mainly exists for the sake of the migration between the legacy
                ///         Optimism system and Bedrock.
                function donateETH() external payable {
                    // Intentionally empty.
                }
                /// @notice Returns the gas paying token and its decimals.
                function gasPayingToken() internal view returns (address addr_, uint8 decimals_) {
                    (addr_, decimals_) = systemConfig.gasPayingToken();
                }
                /// @notice Getter for the resource config.
                ///         Used internally by the ResourceMetering contract.
                ///         The SystemConfig is the source of truth for the resource config.
                /// @return ResourceMetering ResourceConfig
                function _resourceConfig() internal view override returns (ResourceMetering.ResourceConfig memory) {
                    return systemConfig.resourceConfig();
                }
                /// @notice Proves a withdrawal transaction.
                /// @param _tx              Withdrawal transaction to finalize.
                /// @param _l2OutputIndex   L2 output index to prove against.
                /// @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
                /// @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
                function proveWithdrawalTransaction(
                    Types.WithdrawalTransaction memory _tx,
                    uint256 _l2OutputIndex,
                    Types.OutputRootProof calldata _outputRootProof,
                    bytes[] calldata _withdrawalProof
                )
                    external
                    whenNotPaused
                {
                    // Prevent users from creating a deposit transaction where this address is the message
                    // sender on L2. Because this is checked here, we do not need to check again in
                    // `finalizeWithdrawalTransaction`.
                    if (_tx.target == address(this)) revert BadTarget();
                    // Get the output root and load onto the stack to prevent multiple mloads. This will
                    // revert if there is no output root for the given block number.
                    bytes32 outputRoot = l2Oracle.getL2Output(_l2OutputIndex).outputRoot;
                    // Verify that the output root can be generated with the elements in the proof.
                    require(
                        outputRoot == Hashing.hashOutputRootProof(_outputRootProof), "OptimismPortal: invalid output root proof"
                    );
                    // Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
                    bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                    ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                    // We generally want to prevent users from proving the same withdrawal multiple times
                    // because each successive proof will update the timestamp. A malicious user can take
                    // advantage of this to prevent other users from finalizing their withdrawal. However,
                    // since withdrawals are proven before an output root is finalized, we need to allow users
                    // to re-prove their withdrawal only in the case that the output root for their specified
                    // output index has been updated.
                    require(
                        provenWithdrawal.timestamp == 0
                            || l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex).outputRoot != provenWithdrawal.outputRoot,
                        "OptimismPortal: withdrawal hash has already been proven"
                    );
                    // Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
                    // Refer to the Solidity documentation for more information on how storage layouts are
                    // computed for mappings.
                    bytes32 storageKey = keccak256(
                        abi.encode(
                            withdrawalHash,
                            uint256(0) // The withdrawals mapping is at the first slot in the layout.
                        )
                    );
                    // Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
                    // on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
                    // bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
                    // be relayed on L1.
                    require(
                        SecureMerkleTrie.verifyInclusionProof({
                            _key: abi.encode(storageKey),
                            _value: hex"01",
                            _proof: _withdrawalProof,
                            _root: _outputRootProof.messagePasserStorageRoot
                        }),
                        "OptimismPortal: invalid withdrawal inclusion proof"
                    );
                    // Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
                    // `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
                    // proven once unless it is submitted again with a different outputRoot.
                    provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
                        outputRoot: outputRoot,
                        timestamp: uint128(block.timestamp),
                        l2OutputIndex: uint128(_l2OutputIndex)
                    });
                    // Emit a `WithdrawalProven` event.
                    emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
                }
                /// @notice Finalizes a withdrawal transaction.
                /// @param _tx Withdrawal transaction to finalize.
                function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external whenNotPaused {
                    // Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
                    // than the default value when a withdrawal transaction is being finalized. This check is
                    // a defacto reentrancy guard.
                    if (l2Sender != Constants.DEFAULT_L2_SENDER) revert NonReentrant();
                    // Grab the proven withdrawal from the `provenWithdrawals` map.
                    bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
                    ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
                    // A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
                    // been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
                    // a timestamp of zero.
                    require(provenWithdrawal.timestamp != 0, "OptimismPortal: withdrawal has not been proven yet");
                    // As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
                    // starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
                    // safety against weird bugs in the proving step.
                    require(
                        provenWithdrawal.timestamp >= l2Oracle.startingTimestamp(),
                        "OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
                    );
                    // A proven withdrawal must wait at least the finalization period before it can be
                    // finalized. This waiting period can elapse in parallel with the waiting period for the
                    // output the withdrawal was proven against. In effect, this means that the minimum
                    // withdrawal time is proposal submission time + finalization period.
                    require(
                        _isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
                        "OptimismPortal: proven withdrawal finalization period has not elapsed"
                    );
                    // Grab the OutputProposal from the L2OutputOracle, will revert if the output that
                    // corresponds to the given index has not been proposed yet.
                    Types.OutputProposal memory proposal = l2Oracle.getL2Output(provenWithdrawal.l2OutputIndex);
                    // Check that the output root that was used to prove the withdrawal is the same as the
                    // current output root for the given output index. An output root may change if it is
                    // deleted by the challenger address and then re-proposed.
                    require(
                        proposal.outputRoot == provenWithdrawal.outputRoot,
                        "OptimismPortal: output root proven is not the same as current output root"
                    );
                    // Check that the output proposal has also been finalized.
                    require(
                        _isFinalizationPeriodElapsed(proposal.timestamp),
                        "OptimismPortal: output proposal finalization period has not elapsed"
                    );
                    // Check that this withdrawal has not already been finalized, this is replay protection.
                    require(finalizedWithdrawals[withdrawalHash] == false, "OptimismPortal: withdrawal has already been finalized");
                    // Mark the withdrawal as finalized so it can't be replayed.
                    finalizedWithdrawals[withdrawalHash] = true;
                    // Set the l2Sender so contracts know who triggered this withdrawal on L2.
                    // This acts as a reentrancy guard.
                    l2Sender = _tx.sender;
                    bool success;
                    (address token,) = gasPayingToken();
                    if (token == Constants.ETHER) {
                        // Trigger the call to the target contract. We use a custom low level method
                        // SafeCall.callWithMinGas to ensure two key properties
                        //   1. Target contracts cannot force this call to run out of gas by returning a very large
                        //      amount of data (and this is OK because we don't care about the returndata here).
                        //   2. The amount of gas provided to the execution context of the target is at least the
                        //      gas limit specified by the user. If there is not enough gas in the current context
                        //      to accomplish this, `callWithMinGas` will revert.
                        success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, _tx.value, _tx.data);
                    } else {
                        // Cannot call the token contract directly from the portal. This would allow an attacker
                        // to call approve from a withdrawal and drain the balance of the portal.
                        if (_tx.target == token) revert BadTarget();
                        // Only transfer value when a non zero value is specified. This saves gas in the case of
                        // using the standard bridge or arbitrary message passing.
                        if (_tx.value != 0) {
                            // Update the contracts internal accounting of the amount of native asset in L2.
                            _balance -= _tx.value;
                            // Read the balance of the target contract before the transfer so the consistency
                            // of the transfer can be checked afterwards.
                            uint256 startBalance = IERC20(token).balanceOf(address(this));
                            // Transfer the ERC20 balance to the target, accounting for non standard ERC20
                            // implementations that may not return a boolean. This reverts if the low level
                            // call is not successful.
                            IERC20(token).safeTransfer({ to: _tx.target, value: _tx.value });
                            // The balance must be transferred exactly.
                            if (IERC20(token).balanceOf(address(this)) != startBalance - _tx.value) {
                                revert TransferFailed();
                            }
                        }
                        // Make a call to the target contract only if there is calldata.
                        if (_tx.data.length != 0) {
                            success = SafeCall.callWithMinGas(_tx.target, _tx.gasLimit, 0, _tx.data);
                        } else {
                            success = true;
                        }
                    }
                    // Reset the l2Sender back to the default value.
                    l2Sender = Constants.DEFAULT_L2_SENDER;
                    // All withdrawals are immediately finalized. Replayability can
                    // be achieved through contracts built on top of this contract
                    emit WithdrawalFinalized(withdrawalHash, success);
                    // Reverting here is useful for determining the exact gas cost to successfully execute the
                    // sub call to the target contract if the minimum gas limit specified by the user would not
                    // be sufficient to execute the sub call.
                    if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
                        revert GasEstimation();
                    }
                }
                /// @notice Entrypoint to depositing an ERC20 token as a custom gas token.
                ///         This function depends on a well formed ERC20 token. There are only
                ///         so many checks that can be done on chain for this so it is assumed
                ///         that chain operators will deploy chains with well formed ERC20 tokens.
                /// @param _to         Target address on L2.
                /// @param _mint       Units of ERC20 token to deposit into L2.
                /// @param _value      Units of ERC20 token to send on L2 to the recipient.
                /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                /// @param _isCreation Whether or not the transaction is a contract creation.
                /// @param _data       Data to trigger the recipient with.
                function depositERC20Transaction(
                    address _to,
                    uint256 _mint,
                    uint256 _value,
                    uint64 _gasLimit,
                    bool _isCreation,
                    bytes memory _data
                )
                    public
                    metered(_gasLimit)
                {
                    // Can only be called if an ERC20 token is used for gas paying on L2
                    (address token,) = gasPayingToken();
                    if (token == Constants.ETHER) revert OnlyCustomGasToken();
                    // Gives overflow protection for L2 account balances.
                    _balance += _mint;
                    // Get the balance of the portal before the transfer.
                    uint256 startBalance = IERC20(token).balanceOf(address(this));
                    // Take ownership of the token. It is assumed that the user has given the portal an approval.
                    IERC20(token).safeTransferFrom({ from: msg.sender, to: address(this), value: _mint });
                    // Double check that the portal now has the exact amount of token.
                    if (IERC20(token).balanceOf(address(this)) != startBalance + _mint) {
                        revert TransferFailed();
                    }
                    _depositTransaction({
                        _to: _to,
                        _mint: _mint,
                        _value: _value,
                        _gasLimit: _gasLimit,
                        _isCreation: _isCreation,
                        _data: _data
                    });
                }
                /// @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
                ///         deriving deposit transactions. Note that if a deposit is made by a contract, its
                ///         address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
                ///         using the CrossDomainMessenger contracts for a simpler developer experience.
                /// @param _to         Target address on L2.
                /// @param _value      ETH value to send to the recipient.
                /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                /// @param _isCreation Whether or not the transaction is a contract creation.
                /// @param _data       Data to trigger the recipient with.
                function depositTransaction(
                    address _to,
                    uint256 _value,
                    uint64 _gasLimit,
                    bool _isCreation,
                    bytes memory _data
                )
                    public
                    payable
                    metered(_gasLimit)
                {
                    (address token,) = gasPayingToken();
                    if (token != Constants.ETHER && msg.value != 0) revert NoValue();
                    _depositTransaction({
                        _to: _to,
                        _mint: msg.value,
                        _value: _value,
                        _gasLimit: _gasLimit,
                        _isCreation: _isCreation,
                        _data: _data
                    });
                }
                /// @notice Common logic for creating deposit transactions.
                /// @param _to         Target address on L2.
                /// @param _mint       Units of asset to deposit into L2.
                /// @param _value      Units of asset to send on L2 to the recipient.
                /// @param _gasLimit   Amount of L2 gas to purchase by burning gas on L1.
                /// @param _isCreation Whether or not the transaction is a contract creation.
                /// @param _data       Data to trigger the recipient with.
                function _depositTransaction(
                    address _to,
                    uint256 _mint,
                    uint256 _value,
                    uint64 _gasLimit,
                    bool _isCreation,
                    bytes memory _data
                )
                    internal
                {
                    // Just to be safe, make sure that people specify address(0) as the target when doing
                    // contract creations.
                    if (_isCreation && _to != address(0)) revert BadTarget();
                    // Prevent depositing transactions that have too small of a gas limit. Users should pay
                    // more for more resource usage.
                    if (_gasLimit < minimumGasLimit(uint64(_data.length))) revert SmallGasLimit();
                    // Prevent the creation of deposit transactions that have too much calldata. This gives an
                    // upper limit on the size of unsafe blocks over the p2p network. 120kb is chosen to ensure
                    // that the transaction can fit into the p2p network policy of 128kb even though deposit
                    // transactions are not gossipped over the p2p network.
                    if (_data.length > 120_000) revert LargeCalldata();
                    // Transform the from-address to its alias if the caller is a contract.
                    address from = msg.sender;
                    if (msg.sender != tx.origin) {
                        from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
                    }
                    // Compute the opaque data that will be emitted as part of the TransactionDeposited event.
                    // We use opaque data so that we can update the TransactionDeposited event in the future
                    // without breaking the current interface.
                    bytes memory opaqueData = abi.encodePacked(_mint, _value, _gasLimit, _isCreation, _data);
                    // Emit a TransactionDeposited event so that the rollup node can derive a deposit
                    // transaction for this deposit.
                    emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
                }
                /// @notice Sets the gas paying token for the L2 system. This token is used as the
                ///         L2 native asset. Only the SystemConfig contract can call this function.
                function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external {
                    if (msg.sender != address(systemConfig)) revert Unauthorized();
                    // Set L2 deposit gas as used without paying burning gas. Ensures that deposits cannot use too much L2 gas.
                    // This value must be large enough to cover the cost of calling `L1Block.setGasPayingToken`.
                    useGas(SYSTEM_DEPOSIT_GAS_LIMIT);
                    // Emit the special deposit transaction directly that sets the gas paying
                    // token in the L1Block predeploy contract.
                    emit TransactionDeposited(
                        Constants.DEPOSITOR_ACCOUNT,
                        Predeploys.L1_BLOCK_ATTRIBUTES,
                        DEPOSIT_VERSION,
                        abi.encodePacked(
                            uint256(0), // mint
                            uint256(0), // value
                            uint64(SYSTEM_DEPOSIT_GAS_LIMIT), // gasLimit
                            false, // isCreation,
                            abi.encodeCall(L1Block.setGasPayingToken, (_token, _decimals, _name, _symbol))
                        )
                    );
                }
                /// @notice Determine if a given output is finalized.
                ///         Reverts if the call to l2Oracle.getL2Output reverts.
                ///         Returns a boolean otherwise.
                /// @param _l2OutputIndex Index of the L2 output to check.
                /// @return Whether or not the output is finalized.
                function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
                    return _isFinalizationPeriodElapsed(l2Oracle.getL2Output(_l2OutputIndex).timestamp);
                }
                /// @notice Determines whether the finalization period has elapsed with respect to
                ///         the provided block timestamp.
                /// @param _timestamp Timestamp to check.
                /// @return Whether or not the finalization period has elapsed.
                function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
                    return block.timestamp > _timestamp + l2Oracle.FINALIZATION_PERIOD_SECONDS();
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title SafeCall
            /// @notice Perform low level safe calls
            library SafeCall {
                /// @notice Performs a low level call without copying any returndata.
                /// @dev Passes no calldata to the call context.
                /// @param _target   Address to call
                /// @param _gas      Amount of gas to pass to the call
                /// @param _value    Amount of value to pass to the call
                function send(address _target, uint256 _gas, uint256 _value) internal returns (bool success_) {
                    assembly {
                        success_ :=
                            call(
                                _gas, // gas
                                _target, // recipient
                                _value, // ether value
                                0, // inloc
                                0, // inlen
                                0, // outloc
                                0 // outlen
                            )
                    }
                }
                /// @notice Perform a low level call with all gas without copying any returndata
                /// @param _target   Address to call
                /// @param _value    Amount of value to pass to the call
                function send(address _target, uint256 _value) internal returns (bool success_) {
                    success_ = send(_target, gasleft(), _value);
                }
                /// @notice Perform a low level call without copying any returndata
                /// @param _target   Address to call
                /// @param _gas      Amount of gas to pass to the call
                /// @param _value    Amount of value to pass to the call
                /// @param _calldata Calldata to pass to the call
                function call(
                    address _target,
                    uint256 _gas,
                    uint256 _value,
                    bytes memory _calldata
                )
                    internal
                    returns (bool success_)
                {
                    assembly {
                        success_ :=
                            call(
                                _gas, // gas
                                _target, // recipient
                                _value, // ether value
                                add(_calldata, 32), // inloc
                                mload(_calldata), // inlen
                                0, // outloc
                                0 // outlen
                            )
                    }
                }
                /// @notice Helper function to determine if there is sufficient gas remaining within the context
                ///         to guarantee that the minimum gas requirement for a call will be met as well as
                ///         optionally reserving a specified amount of gas for after the call has concluded.
                /// @param _minGas      The minimum amount of gas that may be passed to the target context.
                /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution
                ///                     of the target context.
                /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target
                ///         context as well as reserve `_reservedGas` for the caller after the execution of
                ///         the target context.
                /// @dev !!!!! FOOTGUN ALERT !!!!!
                ///      1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the
                ///          `CALL` opcode's `address_access_cost`, `positive_value_cost`, and
                ///          `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is
                ///          still possible to self-rekt by initiating a withdrawal with a minimum gas limit
                ///          that does not account for the `memory_expansion_cost` & `code_execution_cost`
                ///          factors of the dynamic cost of the `CALL` opcode.
                ///      2.) This function should *directly* precede the external call if possible. There is an
                ///          added buffer to account for gas consumed between this check and the call, but it
                ///          is only 5,700 gas.
                ///      3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call
                ///          frame may be passed to a subcontext, we need to ensure that the gas will not be
                ///          truncated.
                ///      4.) Use wisely. This function is not a silver bullet.
                function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) {
                    bool _hasMinGas;
                    assembly {
                        // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas)
                        _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))))
                    }
                    return _hasMinGas;
                }
                /// @notice Perform a low level call without copying any returndata. This function
                ///         will revert if the call cannot be performed with the specified minimum
                ///         gas.
                /// @param _target   Address to call
                /// @param _minGas   The minimum amount of gas that may be passed to the call
                /// @param _value    Amount of value to pass to the call
                /// @param _calldata Calldata to pass to the call
                function callWithMinGas(
                    address _target,
                    uint256 _minGas,
                    uint256 _value,
                    bytes memory _calldata
                )
                    internal
                    returns (bool)
                {
                    bool _success;
                    bool _hasMinGas = hasMinGas(_minGas, 0);
                    assembly {
                        // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000
                        if iszero(_hasMinGas) {
                            // Store the "Error(string)" selector in scratch space.
                            mstore(0, 0x08c379a0)
                            // Store the pointer to the string length in scratch space.
                            mstore(32, 32)
                            // Store the string.
                            //
                            // SAFETY:
                            // - We pad the beginning of the string with two zero bytes as well as the
                            // length (24) to ensure that we override the free memory pointer at offset
                            // 0x40. This is necessary because the free memory pointer is likely to
                            // be greater than 1 byte when this function is called, but it is incredibly
                            // unlikely that it will be greater than 3 bytes. As for the data within
                            // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                            // - It's fine to clobber the free memory pointer, we're reverting.
                            mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)
                            // Revert with 'Error("SafeCall: Not enough gas")'
                            revert(28, 100)
                        }
                        // The call will be supplied at least ((_minGas * 64) / 63) gas due to the
                        // above assertion. This ensures that, in all circumstances (except for when the
                        // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost`
                        // factors of the dynamic cost of the `CALL` opcode), the call will receive at least
                        // the minimum amount of gas specified.
                        _success :=
                            call(
                                gas(), // gas
                                _target, // recipient
                                _value, // ether value
                                add(_calldata, 32), // inloc
                                mload(_calldata), // inlen
                                0x00, // outloc
                                0x00 // outlen
                            )
                    }
                    return _success;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Types } from "src/libraries/Types.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @custom:proxied
            /// @title L2OutputOracle
            /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
            ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
            ///         these outputs to verify information about the state of L2.
            contract L2OutputOracle is Initializable, ISemver {
                /// @notice The number of the first L2 block recorded in this contract.
                uint256 public startingBlockNumber;
                /// @notice The timestamp of the first L2 block recorded in this contract.
                uint256 public startingTimestamp;
                /// @notice An array of L2 output proposals.
                Types.OutputProposal[] internal l2Outputs;
                /// @notice The interval in L2 blocks at which checkpoints must be submitted.
                /// @custom:network-specific
                uint256 public submissionInterval;
                /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
                /// @custom:network-specific
                uint256 public l2BlockTime;
                /// @notice The address of the challenger. Can be updated via upgrade.
                /// @custom:network-specific
                address public challenger;
                /// @notice The address of the proposer. Can be updated via upgrade.
                /// @custom:network-specific
                address public proposer;
                /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
                /// @custom:network-specific
                uint256 public finalizationPeriodSeconds;
                /// @notice Emitted when an output is proposed.
                /// @param outputRoot    The output root.
                /// @param l2OutputIndex The index of the output in the l2Outputs array.
                /// @param l2BlockNumber The L2 block number of the output root.
                /// @param l1Timestamp   The L1 timestamp when proposed.
                event OutputProposed(
                    bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                );
                /// @notice Emitted when outputs are deleted.
                /// @param prevNextOutputIndex Next L2 output index before the deletion.
                /// @param newNextOutputIndex  Next L2 output index after the deletion.
                event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                /// @notice Semantic version.
                /// @custom:semver 1.8.0
                string public constant version = "1.8.0";
                /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
                ///         in the getting-started config.
                constructor() {
                    initialize({
                        _submissionInterval: 1,
                        _l2BlockTime: 1,
                        _startingBlockNumber: 0,
                        _startingTimestamp: 0,
                        _proposer: address(0),
                        _challenger: address(0),
                        _finalizationPeriodSeconds: 0
                    });
                }
                /// @notice Initializer.
                /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
                /// @param _l2BlockTime         The time per L2 block, in seconds.
                /// @param _startingBlockNumber The number of the first L2 block.
                /// @param _startingTimestamp   The timestamp of the first L2 block.
                /// @param _proposer            The address of the proposer.
                /// @param _challenger          The address of the challenger.
                /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
                ///                                   can be finalized.
                function initialize(
                    uint256 _submissionInterval,
                    uint256 _l2BlockTime,
                    uint256 _startingBlockNumber,
                    uint256 _startingTimestamp,
                    address _proposer,
                    address _challenger,
                    uint256 _finalizationPeriodSeconds
                )
                    public
                    initializer
                {
                    require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                    require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                    require(
                        _startingTimestamp <= block.timestamp,
                        "L2OutputOracle: starting L2 timestamp must be less than current time"
                    );
                    submissionInterval = _submissionInterval;
                    l2BlockTime = _l2BlockTime;
                    startingBlockNumber = _startingBlockNumber;
                    startingTimestamp = _startingTimestamp;
                    proposer = _proposer;
                    challenger = _challenger;
                    finalizationPeriodSeconds = _finalizationPeriodSeconds;
                }
                /// @notice Getter for the submissionInterval.
                ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
                /// @return Submission interval.
                /// @custom:legacy
                function SUBMISSION_INTERVAL() external view returns (uint256) {
                    return submissionInterval;
                }
                /// @notice Getter for the l2BlockTime.
                ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
                /// @return L2 block time.
                /// @custom:legacy
                function L2_BLOCK_TIME() external view returns (uint256) {
                    return l2BlockTime;
                }
                /// @notice Getter for the challenger address.
                ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
                /// @return Address of the challenger.
                /// @custom:legacy
                function CHALLENGER() external view returns (address) {
                    return challenger;
                }
                /// @notice Getter for the proposer address.
                ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
                /// @return Address of the proposer.
                /// @custom:legacy
                function PROPOSER() external view returns (address) {
                    return proposer;
                }
                /// @notice Getter for the finalizationPeriodSeconds.
                ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
                /// @return Finalization period in seconds.
                /// @custom:legacy
                function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                    return finalizationPeriodSeconds;
                }
                /// @notice Deletes all output proposals after and including the proposal that corresponds to
                ///         the given output index. Only the challenger address can delete outputs.
                /// @param _l2OutputIndex Index of the first L2 output to be deleted.
                ///                       All outputs after this output will also be deleted.
                function deleteL2Outputs(uint256 _l2OutputIndex) external {
                    require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                    // Make sure we're not *increasing* the length of the array.
                    require(
                        _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                    );
                    // Do not allow deleting any outputs that have already been finalized.
                    require(
                        block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                        "L2OutputOracle: cannot delete outputs that have already been finalized"
                    );
                    uint256 prevNextL2OutputIndex = nextOutputIndex();
                    // Use assembly to delete the array elements because Solidity doesn't allow it.
                    assembly {
                        sstore(l2Outputs.slot, _l2OutputIndex)
                    }
                    emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
                }
                /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
                ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
                ///         order to be accepted. This function may only be called by the Proposer.
                /// @param _outputRoot    The L2 output of the checkpoint block.
                /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
                /// @param _l1BlockHash   A block hash which must be included in the current chain.
                /// @param _l1BlockNumber The block number with the specified block hash.
                function proposeL2Output(
                    bytes32 _outputRoot,
                    uint256 _l2BlockNumber,
                    bytes32 _l1BlockHash,
                    uint256 _l1BlockNumber
                )
                    external
                    payable
                {
                    require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                    require(
                        _l2BlockNumber == nextBlockNumber(),
                        "L2OutputOracle: block number must be equal to next expected block number"
                    );
                    require(
                        computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                        "L2OutputOracle: cannot propose L2 output in the future"
                    );
                    require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                    if (_l1BlockHash != bytes32(0)) {
                        // This check allows the proposer to propose an output based on a given L1 block,
                        // without fear that it will be reorged out.
                        // It will also revert if the blockheight provided is more than 256 blocks behind the
                        // chain tip (as the hash will return as zero). This does open the door to a griefing
                        // attack in which the proposer's submission is censored until the block is no longer
                        // retrievable, if the proposer is experiencing this attack it can simply leave out the
                        // blockhash value, and delay submission until it is confident that the L1 block is
                        // finalized.
                        require(
                            blockhash(_l1BlockNumber) == _l1BlockHash,
                            "L2OutputOracle: block hash does not match the hash at the expected height"
                        );
                    }
                    emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                    l2Outputs.push(
                        Types.OutputProposal({
                            outputRoot: _outputRoot,
                            timestamp: uint128(block.timestamp),
                            l2BlockNumber: uint128(_l2BlockNumber)
                        })
                    );
                }
                /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
                /// @param _l2OutputIndex Index of the output to return.
                /// @return The output at the given index.
                function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[_l2OutputIndex];
                }
                /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return Index of the first checkpoint that commits to the given L2 block number.
                function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                    // Make sure an output for this block number has actually been proposed.
                    require(
                        _l2BlockNumber <= latestBlockNumber(),
                        "L2OutputOracle: cannot get output for a block that has not been proposed"
                    );
                    // Make sure there's at least one output proposed.
                    require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                    // Find the output via binary search, guaranteed to exist.
                    uint256 lo = 0;
                    uint256 hi = l2Outputs.length;
                    while (lo < hi) {
                        uint256 mid = (lo + hi) / 2;
                        if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                            lo = mid + 1;
                        } else {
                            hi = mid;
                        }
                    }
                    return lo;
                }
                /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return First checkpoint that commits to the given L2 block number.
                function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
                }
                /// @notice Returns the number of outputs that have been proposed.
                ///         Will revert if no outputs have been proposed yet.
                /// @return The number of outputs that have been proposed.
                function latestOutputIndex() external view returns (uint256) {
                    return l2Outputs.length - 1;
                }
                /// @notice Returns the index of the next output to be proposed.
                /// @return The index of the next output to be proposed.
                function nextOutputIndex() public view returns (uint256) {
                    return l2Outputs.length;
                }
                /// @notice Returns the block number of the latest submitted L2 output proposal.
                ///         If no proposals been submitted yet then this function will return the starting
                ///         block number.
                /// @return Latest submitted L2 block number.
                function latestBlockNumber() public view returns (uint256) {
                    return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
                }
                /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
                /// @return Next L2 block number.
                function nextBlockNumber() public view returns (uint256) {
                    return latestBlockNumber() + submissionInterval;
                }
                /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
                /// @param _l2BlockNumber The L2 block number of the target block.
                /// @return L2 timestamp of the given block.
                function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                    return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { OwnableUpgradeable } from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            import { Storage } from "src/libraries/Storage.sol";
            import { Constants } from "src/libraries/Constants.sol";
            import { OptimismPortal } from "src/L1/OptimismPortal.sol";
            import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol";
            import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
            /// @title SystemConfig
            /// @notice The SystemConfig contract is used to manage configuration of an Optimism network.
            ///         All configuration is stored on L1 and picked up by L2 as part of the derviation of
            ///         the L2 chain.
            contract SystemConfig is OwnableUpgradeable, ISemver, IGasToken {
                /// @notice Enum representing different types of updates.
                /// @custom:value BATCHER              Represents an update to the batcher hash.
                /// @custom:value GAS_CONFIG           Represents an update to txn fee config on L2.
                /// @custom:value GAS_LIMIT            Represents an update to gas limit on L2.
                /// @custom:value UNSAFE_BLOCK_SIGNER  Represents an update to the signer key for unsafe
                ///                                    block distrubution.
                enum UpdateType {
                    BATCHER,
                    GAS_CONFIG,
                    GAS_LIMIT,
                    UNSAFE_BLOCK_SIGNER
                }
                /// @notice Struct representing the addresses of L1 system contracts. These should be the
                ///         contracts that users interact with (not implementations for proxied contracts)
                ///         and are network specific.
                struct Addresses {
                    address l1CrossDomainMessenger;
                    address l1ERC721Bridge;
                    address l1StandardBridge;
                    address disputeGameFactory;
                    address optimismPortal;
                    address optimismMintableERC20Factory;
                    address gasPayingToken;
                }
                /// @notice Version identifier, used for upgrades.
                uint256 public constant VERSION = 0;
                /// @notice Storage slot that the unsafe block signer is stored at.
                ///         Storing it at this deterministic storage slot allows for decoupling the storage
                ///         layout from the way that `solc` lays out storage. The `op-node` uses a storage
                ///         proof to fetch this value.
                /// @dev    NOTE: this value will be migrated to another storage slot in a future version.
                ///         User input should not be placed in storage in this contract until this migration
                ///         happens. It is unlikely that keccak second preimage resistance will be broken,
                ///         but it is better to be safe than sorry.
                bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
                /// @notice Storage slot that the L1CrossDomainMessenger address is stored at.
                bytes32 public constant L1_CROSS_DOMAIN_MESSENGER_SLOT =
                    bytes32(uint256(keccak256("systemconfig.l1crossdomainmessenger")) - 1);
                /// @notice Storage slot that the L1ERC721Bridge address is stored at.
                bytes32 public constant L1_ERC_721_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1erc721bridge")) - 1);
                /// @notice Storage slot that the L1StandardBridge address is stored at.
                bytes32 public constant L1_STANDARD_BRIDGE_SLOT = bytes32(uint256(keccak256("systemconfig.l1standardbridge")) - 1);
                /// @notice Storage slot that the OptimismPortal address is stored at.
                bytes32 public constant OPTIMISM_PORTAL_SLOT = bytes32(uint256(keccak256("systemconfig.optimismportal")) - 1);
                /// @notice Storage slot that the OptimismMintableERC20Factory address is stored at.
                bytes32 public constant OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT =
                    bytes32(uint256(keccak256("systemconfig.optimismmintableerc20factory")) - 1);
                /// @notice Storage slot that the batch inbox address is stored at.
                bytes32 public constant BATCH_INBOX_SLOT = bytes32(uint256(keccak256("systemconfig.batchinbox")) - 1);
                /// @notice Storage slot for block at which the op-node can start searching for logs from.
                bytes32 public constant START_BLOCK_SLOT = bytes32(uint256(keccak256("systemconfig.startBlock")) - 1);
                /// @notice Storage slot for the DisputeGameFactory address.
                bytes32 public constant DISPUTE_GAME_FACTORY_SLOT =
                    bytes32(uint256(keccak256("systemconfig.disputegamefactory")) - 1);
                /// @notice The number of decimals that the gas paying token has.
                uint8 internal constant GAS_PAYING_TOKEN_DECIMALS = 18;
                /// @notice The maximum gas limit that can be set for L2 blocks. This limit is used to enforce that the blocks
                ///         on L2 are not too large to process and prove. Over time, this value can be increased as various
                ///         optimizations and improvements are made to the system at large.
                uint64 internal constant MAX_GAS_LIMIT = 200_000_000;
                /// @notice Fixed L2 gas overhead. Used as part of the L2 fee calculation.
                ///         Deprecated since the Ecotone network upgrade
                uint256 public overhead;
                /// @notice Dynamic L2 gas overhead. Used as part of the L2 fee calculation.
                ///         The most significant byte is used to determine the version since the
                ///         Ecotone network upgrade.
                uint256 public scalar;
                /// @notice Identifier for the batcher.
                ///         For version 1 of this configuration, this is represented as an address left-padded
                ///         with zeros to 32 bytes.
                bytes32 public batcherHash;
                /// @notice L2 block gas limit.
                uint64 public gasLimit;
                /// @notice Basefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
                uint32 public basefeeScalar;
                /// @notice Blobbasefee scalar value. Part of the L2 fee calculation since the Ecotone network upgrade.
                uint32 public blobbasefeeScalar;
                /// @notice The configuration for the deposit fee market.
                ///         Used by the OptimismPortal to meter the cost of buying L2 gas on L1.
                ///         Set as internal with a getter so that the struct is returned instead of a tuple.
                ResourceMetering.ResourceConfig internal _resourceConfig;
                /// @notice Emitted when configuration is updated.
                /// @param version    SystemConfig version.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 2.3.0-beta.2
                function version() public pure virtual returns (string memory) {
                    return "2.3.0-beta.2";
                }
                /// @notice Constructs the SystemConfig contract. Cannot set
                ///         the owner to `address(0)` due to the Ownable contract's
                ///         implementation, so set it to `address(0xdEaD)`
                /// @dev    START_BLOCK_SLOT is set to type(uint256).max here so that it will be a dead value
                ///         in the singleton and is skipped by initialize when setting the start block.
                constructor() {
                    Storage.setUint(START_BLOCK_SLOT, type(uint256).max);
                    initialize({
                        _owner: address(0xdEaD),
                        _basefeeScalar: 0,
                        _blobbasefeeScalar: 0,
                        _batcherHash: bytes32(0),
                        _gasLimit: 1,
                        _unsafeBlockSigner: address(0),
                        _config: ResourceMetering.ResourceConfig({
                            maxResourceLimit: 1,
                            elasticityMultiplier: 1,
                            baseFeeMaxChangeDenominator: 2,
                            minimumBaseFee: 0,
                            systemTxMaxGas: 0,
                            maximumBaseFee: 0
                        }),
                        _batchInbox: address(0),
                        _addresses: SystemConfig.Addresses({
                            l1CrossDomainMessenger: address(0),
                            l1ERC721Bridge: address(0),
                            l1StandardBridge: address(0),
                            disputeGameFactory: address(0),
                            optimismPortal: address(0),
                            optimismMintableERC20Factory: address(0),
                            gasPayingToken: address(0)
                        })
                    });
                }
                /// @notice Initializer.
                ///         The resource config must be set before the require check.
                /// @param _owner             Initial owner of the contract.
                /// @param _basefeeScalar     Initial basefee scalar value.
                /// @param _blobbasefeeScalar Initial blobbasefee scalar value.
                /// @param _batcherHash       Initial batcher hash.
                /// @param _gasLimit          Initial gas limit.
                /// @param _unsafeBlockSigner Initial unsafe block signer address.
                /// @param _config            Initial ResourceConfig.
                /// @param _batchInbox        Batch inbox address. An identifier for the op-node to find
                ///                           canonical data.
                /// @param _addresses         Set of L1 contract addresses. These should be the proxies.
                function initialize(
                    address _owner,
                    uint32 _basefeeScalar,
                    uint32 _blobbasefeeScalar,
                    bytes32 _batcherHash,
                    uint64 _gasLimit,
                    address _unsafeBlockSigner,
                    ResourceMetering.ResourceConfig memory _config,
                    address _batchInbox,
                    SystemConfig.Addresses memory _addresses
                )
                    public
                    initializer
                {
                    __Ownable_init();
                    transferOwnership(_owner);
                    // These are set in ascending order of their UpdateTypes.
                    _setBatcherHash(_batcherHash);
                    _setGasConfigEcotone({ _basefeeScalar: _basefeeScalar, _blobbasefeeScalar: _blobbasefeeScalar });
                    _setGasLimit(_gasLimit);
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    Storage.setAddress(BATCH_INBOX_SLOT, _batchInbox);
                    Storage.setAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT, _addresses.l1CrossDomainMessenger);
                    Storage.setAddress(L1_ERC_721_BRIDGE_SLOT, _addresses.l1ERC721Bridge);
                    Storage.setAddress(L1_STANDARD_BRIDGE_SLOT, _addresses.l1StandardBridge);
                    Storage.setAddress(DISPUTE_GAME_FACTORY_SLOT, _addresses.disputeGameFactory);
                    Storage.setAddress(OPTIMISM_PORTAL_SLOT, _addresses.optimismPortal);
                    Storage.setAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT, _addresses.optimismMintableERC20Factory);
                    _setStartBlock();
                    _setGasPayingToken(_addresses.gasPayingToken);
                    _setResourceConfig(_config);
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                }
                /// @notice Returns the minimum L2 gas limit that can be safely set for the system to
                ///         operate. The L2 gas limit must be larger than or equal to the amount of
                ///         gas that is allocated for deposits per block plus the amount of gas that
                ///         is allocated for the system transaction.
                ///         This function is used to determine if changes to parameters are safe.
                /// @return uint64 Minimum gas limit.
                function minimumGasLimit() public view returns (uint64) {
                    return uint64(_resourceConfig.maxResourceLimit) + uint64(_resourceConfig.systemTxMaxGas);
                }
                /// @notice Returns the maximum L2 gas limit that can be safely set for the system to
                ///         operate. This bound is used to prevent the gas limit from being set too high
                ///         and causing the system to be unable to process and/or prove L2 blocks.
                /// @return uint64 Maximum gas limit.
                function maximumGasLimit() public pure returns (uint64) {
                    return MAX_GAS_LIMIT;
                }
                /// @notice High level getter for the unsafe block signer address.
                ///         Unsafe blocks can be propagated across the p2p network if they are signed by the
                ///         key corresponding to this address.
                /// @return addr_ Address of the unsafe block signer.
                function unsafeBlockSigner() public view returns (address addr_) {
                    addr_ = Storage.getAddress(UNSAFE_BLOCK_SIGNER_SLOT);
                }
                /// @notice Getter for the L1CrossDomainMessenger address.
                function l1CrossDomainMessenger() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_CROSS_DOMAIN_MESSENGER_SLOT);
                }
                /// @notice Getter for the L1ERC721Bridge address.
                function l1ERC721Bridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_ERC_721_BRIDGE_SLOT);
                }
                /// @notice Getter for the L1StandardBridge address.
                function l1StandardBridge() external view returns (address addr_) {
                    addr_ = Storage.getAddress(L1_STANDARD_BRIDGE_SLOT);
                }
                /// @notice Getter for the DisputeGameFactory address.
                function disputeGameFactory() external view returns (address addr_) {
                    addr_ = Storage.getAddress(DISPUTE_GAME_FACTORY_SLOT);
                }
                /// @notice Getter for the OptimismPortal address.
                function optimismPortal() public view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_PORTAL_SLOT);
                }
                /// @notice Getter for the OptimismMintableERC20Factory address.
                function optimismMintableERC20Factory() external view returns (address addr_) {
                    addr_ = Storage.getAddress(OPTIMISM_MINTABLE_ERC20_FACTORY_SLOT);
                }
                /// @notice Getter for the BatchInbox address.
                function batchInbox() external view returns (address addr_) {
                    addr_ = Storage.getAddress(BATCH_INBOX_SLOT);
                }
                /// @notice Getter for the StartBlock number.
                function startBlock() external view returns (uint256 startBlock_) {
                    startBlock_ = Storage.getUint(START_BLOCK_SLOT);
                }
                /// @notice Getter for the gas paying asset address.
                function gasPayingToken() public view returns (address addr_, uint8 decimals_) {
                    (addr_, decimals_) = GasPayingToken.getToken();
                }
                /// @notice Getter for custom gas token paying networks. Returns true if the
                ///         network uses a custom gas token.
                function isCustomGasToken() public view returns (bool) {
                    (address token,) = gasPayingToken();
                    return token != Constants.ETHER;
                }
                /// @notice Getter for the gas paying token name.
                function gasPayingTokenName() external view returns (string memory name_) {
                    name_ = GasPayingToken.getName();
                }
                /// @notice Getter for the gas paying token symbol.
                function gasPayingTokenSymbol() external view returns (string memory symbol_) {
                    symbol_ = GasPayingToken.getSymbol();
                }
                /// @notice Internal setter for the gas paying token address, includes validation.
                ///         The token must not already be set and must be non zero and not the ether address
                ///         to set the token address. This prevents the token address from being changed
                ///         and makes it explicitly opt-in to use custom gas token.
                /// @param _token Address of the gas paying token.
                function _setGasPayingToken(address _token) internal virtual {
                    if (_token != address(0) && _token != Constants.ETHER && !isCustomGasToken()) {
                        require(
                            ERC20(_token).decimals() == GAS_PAYING_TOKEN_DECIMALS, "SystemConfig: bad decimals of gas paying token"
                        );
                        bytes32 name = GasPayingToken.sanitize(ERC20(_token).name());
                        bytes32 symbol = GasPayingToken.sanitize(ERC20(_token).symbol());
                        // Set the gas paying token in storage and in the OptimismPortal.
                        GasPayingToken.set({ _token: _token, _decimals: GAS_PAYING_TOKEN_DECIMALS, _name: name, _symbol: symbol });
                        OptimismPortal(payable(optimismPortal())).setGasPayingToken({
                            _token: _token,
                            _decimals: GAS_PAYING_TOKEN_DECIMALS,
                            _name: name,
                            _symbol: symbol
                        });
                    }
                }
                /// @notice Updates the unsafe block signer address. Can only be called by the owner.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
                    _setUnsafeBlockSigner(_unsafeBlockSigner);
                }
                /// @notice Updates the unsafe block signer address.
                /// @param _unsafeBlockSigner New unsafe block signer address.
                function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
                    Storage.setAddress(UNSAFE_BLOCK_SIGNER_SLOT, _unsafeBlockSigner);
                    bytes memory data = abi.encode(_unsafeBlockSigner);
                    emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
                }
                /// @notice Updates the batcher hash. Can only be called by the owner.
                /// @param _batcherHash New batcher hash.
                function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
                    _setBatcherHash(_batcherHash);
                }
                /// @notice Internal function for updating the batcher hash.
                /// @param _batcherHash New batcher hash.
                function _setBatcherHash(bytes32 _batcherHash) internal {
                    batcherHash = _batcherHash;
                    bytes memory data = abi.encode(_batcherHash);
                    emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
                }
                /// @notice Updates gas config. Can only be called by the owner.
                ///         Deprecated in favor of setGasConfigEcotone since the Ecotone upgrade.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
                    _setGasConfig(_overhead, _scalar);
                }
                /// @notice Internal function for updating the gas config.
                /// @param _overhead New overhead value.
                /// @param _scalar   New scalar value.
                function _setGasConfig(uint256 _overhead, uint256 _scalar) internal {
                    require((uint256(0xff) << 248) & _scalar == 0, "SystemConfig: scalar exceeds max.");
                    overhead = _overhead;
                    scalar = _scalar;
                    bytes memory data = abi.encode(_overhead, _scalar);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                }
                /// @notice Updates gas config as of the Ecotone upgrade. Can only be called by the owner.
                /// @param _basefeeScalar     New basefeeScalar value.
                /// @param _blobbasefeeScalar New blobbasefeeScalar value.
                function setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) external onlyOwner {
                    _setGasConfigEcotone(_basefeeScalar, _blobbasefeeScalar);
                }
                /// @notice Internal function for updating the fee scalars as of the Ecotone upgrade.
                /// @param _basefeeScalar     New basefeeScalar value.
                /// @param _blobbasefeeScalar New blobbasefeeScalar value.
                function _setGasConfigEcotone(uint32 _basefeeScalar, uint32 _blobbasefeeScalar) internal {
                    basefeeScalar = _basefeeScalar;
                    blobbasefeeScalar = _blobbasefeeScalar;
                    scalar = (uint256(0x01) << 248) | (uint256(_blobbasefeeScalar) << 32) | _basefeeScalar;
                    bytes memory data = abi.encode(overhead, scalar);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
                }
                /// @notice Updates the L2 gas limit. Can only be called by the owner.
                /// @param _gasLimit New gas limit.
                function setGasLimit(uint64 _gasLimit) external onlyOwner {
                    _setGasLimit(_gasLimit);
                }
                /// @notice Internal function for updating the L2 gas limit.
                /// @param _gasLimit New gas limit.
                function _setGasLimit(uint64 _gasLimit) internal {
                    require(_gasLimit >= minimumGasLimit(), "SystemConfig: gas limit too low");
                    require(_gasLimit <= maximumGasLimit(), "SystemConfig: gas limit too high");
                    gasLimit = _gasLimit;
                    bytes memory data = abi.encode(_gasLimit);
                    emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
                }
                /// @notice Sets the start block in a backwards compatible way. Proxies
                ///         that were initialized before the startBlock existed in storage
                ///         can have their start block set by a user provided override.
                ///         A start block of 0 indicates that there is no override and the
                ///         start block will be set by `block.number`.
                /// @dev    This logic is used to patch legacy deployments with new storage values.
                ///         Use the override if it is provided as a non zero value and the value
                ///         has not already been set in storage. Use `block.number` if the value
                ///         has already been set in storage
                function _setStartBlock() internal {
                    if (Storage.getUint(START_BLOCK_SLOT) == 0) {
                        Storage.setUint(START_BLOCK_SLOT, block.number);
                    }
                }
                /// @notice A getter for the resource config.
                ///         Ensures that the struct is returned instead of a tuple.
                /// @return ResourceConfig
                function resourceConfig() external view returns (ResourceMetering.ResourceConfig memory) {
                    return _resourceConfig;
                }
                /// @notice An internal setter for the resource config.
                ///         Ensures that the config is sane before storing it by checking for invariants.
                ///         In the future, this method may emit an event that the `op-node` picks up
                ///         for when the resource config is changed.
                /// @param _config The new resource config.
                function _setResourceConfig(ResourceMetering.ResourceConfig memory _config) internal {
                    // Min base fee must be less than or equal to max base fee.
                    require(
                        _config.minimumBaseFee <= _config.maximumBaseFee, "SystemConfig: min base fee must be less than max base"
                    );
                    // Base fee change denominator must be greater than 1.
                    require(_config.baseFeeMaxChangeDenominator > 1, "SystemConfig: denominator must be larger than 1");
                    // Max resource limit plus system tx gas must be less than or equal to the L2 gas limit.
                    // The gas limit must be increased before these values can be increased.
                    require(_config.maxResourceLimit + _config.systemTxMaxGas <= gasLimit, "SystemConfig: gas limit too low");
                    // Elasticity multiplier must be greater than 0.
                    require(_config.elasticityMultiplier > 0, "SystemConfig: elasticity multiplier cannot be 0");
                    // No precision loss when computing target resource limit.
                    require(
                        ((_config.maxResourceLimit / _config.elasticityMultiplier) * _config.elasticityMultiplier)
                            == _config.maxResourceLimit,
                        "SystemConfig: precision loss with target resource limit"
                    );
                    _resourceConfig = _config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Storage } from "src/libraries/Storage.sol";
            /// @custom:audit none This contracts is not yet audited.
            /// @title SuperchainConfig
            /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
            contract SuperchainConfig is Initializable, ISemver {
                /// @notice Enum representing different types of updates.
                /// @custom:value GUARDIAN            Represents an update to the guardian.
                enum UpdateType {
                    GUARDIAN
                }
                /// @notice Whether or not the Superchain is paused.
                bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                /// @notice The address of the guardian, which can pause withdrawals from the System.
                ///         It can only be modified by an upgrade.
                bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                /// @notice Emitted when the pause is triggered.
                /// @param identifier A string helping to identify provenance of the pause transaction.
                event Paused(string identifier);
                /// @notice Emitted when the pause is lifted.
                event Unpaused();
                /// @notice Emitted when configuration is updated.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 1.1.0
                string public constant version = "1.1.0";
                /// @notice Constructs the SuperchainConfig contract.
                constructor() {
                    initialize({ _guardian: address(0), _paused: false });
                }
                /// @notice Initializer.
                /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                /// @param _paused      Initial paused status.
                function initialize(address _guardian, bool _paused) public initializer {
                    _setGuardian(_guardian);
                    if (_paused) {
                        _pause("Initializer paused");
                    }
                }
                /// @notice Getter for the guardian address.
                function guardian() public view returns (address guardian_) {
                    guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                }
                /// @notice Getter for the current paused status.
                function paused() public view returns (bool paused_) {
                    paused_ = Storage.getBool(PAUSED_SLOT);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function pause(string memory _identifier) external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                    _pause(_identifier);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function _pause(string memory _identifier) internal {
                    Storage.setBool(PAUSED_SLOT, true);
                    emit Paused(_identifier);
                }
                /// @notice Unpauses withdrawals.
                function unpause() external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                    Storage.setBool(PAUSED_SLOT, false);
                    emit Unpaused();
                }
                /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                ///         will be required to change the guardian.
                /// @param _guardian The new guardian address.
                function _setGuardian(address _guardian) internal {
                    Storage.setAddress(GUARDIAN_SLOT, _guardian);
                    emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice The address that represents ether when dealing with ERC20 token addresses.
                address internal constant ETHER = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
                /// @notice The address that represents the system caller responsible for L1 attributes
                ///         transactions.
                address internal constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Types
            /// @notice Contains various types used throughout the Optimism contract system.
            library Types {
                /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                ///         timestamp that the output root is posted. This timestamp is used to verify that the
                ///         finalization period has passed since the output root was submitted.
                /// @custom:field outputRoot    Hash of the L2 output.
                /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                struct OutputProposal {
                    bytes32 outputRoot;
                    uint128 timestamp;
                    uint128 l2BlockNumber;
                }
                /// @notice Struct representing the elements that are hashed together to generate an output root
                ///         which itself represents a snapshot of the L2 state.
                /// @custom:field version                  Version of the output root.
                /// @custom:field stateRoot                Root of the state trie at the block of this output.
                /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                struct OutputRootProof {
                    bytes32 version;
                    bytes32 stateRoot;
                    bytes32 messagePasserStorageRoot;
                    bytes32 latestBlockhash;
                }
                /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                ///         user (as opposed to a system deposit transaction generated by the system).
                /// @custom:field from        Address of the sender of the transaction.
                /// @custom:field to          Address of the recipient of the transaction.
                /// @custom:field isCreation  True if the transaction is a contract creation.
                /// @custom:field value       Value to send to the recipient.
                /// @custom:field mint        Amount of ETH to mint.
                /// @custom:field gasLimit    Gas limit of the transaction.
                /// @custom:field data        Data of the transaction.
                /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                struct UserDepositTransaction {
                    address from;
                    address to;
                    bool isCreation;
                    uint256 value;
                    uint256 mint;
                    uint64 gasLimit;
                    bytes data;
                    bytes32 l1BlockHash;
                    uint256 logIndex;
                }
                /// @notice Struct representing a withdrawal transaction.
                /// @custom:field nonce    Nonce of the withdrawal transaction
                /// @custom:field sender   Address of the sender of the transaction.
                /// @custom:field target   Address of the recipient of the transaction.
                /// @custom:field value    Value to send to the recipient.
                /// @custom:field gasLimit Gas limit of the transaction.
                /// @custom:field data     Data of the transaction.
                struct WithdrawalTransaction {
                    uint256 nonce;
                    address sender;
                    address target;
                    uint256 value;
                    uint256 gasLimit;
                    bytes data;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Types } from "src/libraries/Types.sol";
            import { Encoding } from "src/libraries/Encoding.sol";
            /// @title Hashing
            /// @notice Hashing handles Optimism's various different hashing schemes.
            library Hashing {
                /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
                ///         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
                ///         system.
                /// @param _tx User deposit transaction to hash.
                /// @return Hash of the RLP encoded L2 deposit transaction.
                function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) {
                    return keccak256(Encoding.encodeDepositTransaction(_tx));
                }
                /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
                ///         of the L2 transaction that corresponds to a deposit is unique and is
                ///         deterministically generated from L1 transaction data.
                /// @param _l1BlockHash Hash of the L1 block where the deposit was included.
                /// @param _logIndex    The index of the log that created the deposit transaction.
                /// @return Hash of the deposit transaction's "source hash".
                function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) {
                    bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
                    return keccak256(abi.encode(bytes32(0), depositId));
                }
                /// @notice Hashes the cross domain message based on the version that is encoded into the
                ///         message nonce.
                /// @param _nonce    Message nonce with version encoded into the first two bytes.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessage(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
                    if (version == 0) {
                        return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
                    } else if (version == 1) {
                        return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                    } else {
                        revert("Hashing: unknown cross domain message version");
                    }
                }
                /// @notice Hashes a cross domain message based on the V0 (legacy) encoding.
                /// @param _target Address of the target of the message.
                /// @param _sender Address of the sender of the message.
                /// @param _data   Data to send with the message.
                /// @param _nonce  Message nonce.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessageV0(
                    address _target,
                    address _sender,
                    bytes memory _data,
                    uint256 _nonce
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
                }
                /// @notice Hashes a cross domain message based on the V1 (current) encoding.
                /// @param _nonce    Message nonce.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Hashed cross domain message.
                function hashCrossDomainMessageV1(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes32)
                {
                    return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data));
                }
                /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
                /// @param _tx Withdrawal transaction to hash.
                /// @return Hashed withdrawal transaction.
                function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) {
                    return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data));
                }
                /// @notice Hashes the various elements of an output root proof into an output root hash which
                ///         can be used to check if the proof is valid.
                /// @param _outputRootProof Output root proof which should hash to an output root.
                /// @return Hashed output root proof.
                function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) {
                    return keccak256(
                        abi.encode(
                            _outputRootProof.version,
                            _outputRootProof.stateRoot,
                            _outputRootProof.messagePasserStorageRoot,
                            _outputRootProof.latestBlockhash
                        )
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { MerkleTrie } from "./MerkleTrie.sol";
            /// @title SecureMerkleTrie
            /// @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
            ///         keys. Ethereum's state trie hashes input keys before storing them.
            library SecureMerkleTrie {
                /// @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
                /// @param _key   Key of the node to search for, as a hex string.
                /// @param _value Value of the node to search for, as a hex string.
                /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                ///               nodes that make a path down to the target node.
                /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                ///               correctly constructed.
                /// @return valid_ Whether or not the proof is valid.
                function verifyInclusionProof(
                    bytes memory _key,
                    bytes memory _value,
                    bytes[] memory _proof,
                    bytes32 _root
                )
                    internal
                    pure
                    returns (bool valid_)
                {
                    bytes memory key = _getSecureKey(_key);
                    valid_ = MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
                }
                /// @notice Retrieves the value associated with a given key.
                /// @param _key   Key to search for, as hex bytes.
                /// @param _proof Merkle trie inclusion proof for the key.
                /// @param _root  Known root of the Merkle trie.
                /// @return value_ Value of the key if it exists.
                function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                    bytes memory key = _getSecureKey(_key);
                    value_ = MerkleTrie.get(key, _proof, _root);
                }
                /// @notice Computes the hashed version of the input key.
                /// @param _key Key to hash.
                /// @return hash_ Hashed version of the key.
                function _getSecureKey(bytes memory _key) private pure returns (bytes memory hash_) {
                    hash_ = abi.encodePacked(keccak256(_key));
                }
            }
            // SPDX-License-Identifier: Apache-2.0
            /*
             * Copyright 2019-2021, Offchain Labs, Inc.
             *
             * Licensed under the Apache License, Version 2.0 (the "License");
             * you may not use this file except in compliance with the License.
             * You may obtain a copy of the License at
             *
             *    http://www.apache.org/licenses/LICENSE-2.0
             *
             * Unless required by applicable law or agreed to in writing, software
             * distributed under the License is distributed on an "AS IS" BASIS,
             * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
             * See the License for the specific language governing permissions and
             * limitations under the License.
             */
            pragma solidity ^0.8.0;
            library AddressAliasHelper {
                uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);
                /// @notice Utility function that converts the address in the L1 that submitted a tx to
                /// the inbox to the msg.sender viewed in the L2
                /// @param l1Address the address in the L1 that triggered the tx to L2
                /// @return l2Address L2 address as viewed in msg.sender
                function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
                    unchecked {
                        l2Address = address(uint160(l1Address) + offset);
                    }
                }
                /// @notice Utility function that converts the msg.sender viewed in the L2 to the
                /// address in the L1 that submitted a tx to the inbox
                /// @param l2Address L2 address as viewed in msg.sender
                /// @return l1Address the address in the L1 that triggered the tx to L2
                function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
                    unchecked {
                        l1Address = address(uint160(l2Address) - offset);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "src/libraries/Burn.sol";
            import { Arithmetic } from "src/libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Error returned when too much gas resource is consumed.
                error OutOfGas();
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) {
                        revert OutOfGas();
                    }
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Adds an amount of L2 gas consumed to the prev bought gas params. This is meant to be used
                ///         when L2 system transactions are generated from L1.
                /// @param _amount Amount of the L2 gas resource requested.
                function useGas(uint32 _amount) internal {
                    params.prevBoughtGas += uint64(_amount);
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                function __ResourceMetering_init() internal onlyInitializing {
                    if (params.prevBlockNum == 0) {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title ISemver
            /// @notice ISemver is a simple contract for ensuring that contracts are
            ///         versioned using semantic versioning.
            interface ISemver {
                /// @notice Getter for the semantic version of the contract. This is not
                ///         meant to be used onchain but instead meant to be used by offchain
                ///         tooling.
                /// @return Semver contract version as a string.
                function version() external view returns (string memory);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            import "../extensions/draft-IERC20Permit.sol";
            import "../../../utils/Address.sol";
            /**
             * @title SafeERC20
             * @dev Wrappers around ERC20 operations that throw on failure (when the token
             * contract returns false). Tokens that return no value (and instead revert or
             * throw on failure) are also supported, non-reverting calls are assumed to be
             * successful.
             * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
             * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
             */
            library SafeERC20 {
                using Address for address;
                function safeTransfer(
                    IERC20 token,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
                }
                function safeTransferFrom(
                    IERC20 token,
                    address from,
                    address to,
                    uint256 value
                ) internal {
                    _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
                }
                /**
                 * @dev Deprecated. This function has issues similar to the ones found in
                 * {IERC20-approve}, and its usage is discouraged.
                 *
                 * Whenever possible, use {safeIncreaseAllowance} and
                 * {safeDecreaseAllowance} instead.
                 */
                function safeApprove(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    // safeApprove should only be called when setting an initial allowance,
                    // or when resetting it to zero. To increase and decrease it, use
                    // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
                    require(
                        (value == 0) || (token.allowance(address(this), spender) == 0),
                        "SafeERC20: approve from non-zero to non-zero allowance"
                    );
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
                }
                function safeIncreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    uint256 newAllowance = token.allowance(address(this), spender) + value;
                    _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                }
                function safeDecreaseAllowance(
                    IERC20 token,
                    address spender,
                    uint256 value
                ) internal {
                    unchecked {
                        uint256 oldAllowance = token.allowance(address(this), spender);
                        require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
                        uint256 newAllowance = oldAllowance - value;
                        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
                    }
                }
                function safePermit(
                    IERC20Permit token,
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) internal {
                    uint256 nonceBefore = token.nonces(owner);
                    token.permit(owner, spender, value, deadline, v, r, s);
                    uint256 nonceAfter = token.nonces(owner);
                    require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
                }
                /**
                 * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
                 * on the return value: the return value is optional (but if data is returned, it must not be false).
                 * @param token The token targeted by the call.
                 * @param data The call data (encoded using abi.encode or one of its variants).
                 */
                function _callOptionalReturn(IERC20 token, bytes memory data) private {
                    // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
                    // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
                    // the target address contains contract code and also asserts for success in the low-level call.
                    bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
                    if (returndata.length > 0) {
                        // Return data is optional
                        require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 standard as defined in the EIP.
             */
            interface IERC20 {
                /**
                 * @dev Emitted when `value` tokens are moved from one account (`from`) to
                 * another (`to`).
                 *
                 * Note that `value` may be zero.
                 */
                event Transfer(address indexed from, address indexed to, uint256 value);
                /**
                 * @dev Emitted when the allowance of a `spender` for an `owner` is set by
                 * a call to {approve}. `value` is the new allowance.
                 */
                event Approval(address indexed owner, address indexed spender, uint256 value);
                /**
                 * @dev Returns the amount of tokens in existence.
                 */
                function totalSupply() external view returns (uint256);
                /**
                 * @dev Returns the amount of tokens owned by `account`.
                 */
                function balanceOf(address account) external view returns (uint256);
                /**
                 * @dev Moves `amount` tokens from the caller's account to `to`.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transfer(address to, uint256 amount) external returns (bool);
                /**
                 * @dev Returns the remaining number of tokens that `spender` will be
                 * allowed to spend on behalf of `owner` through {transferFrom}. This is
                 * zero by default.
                 *
                 * This value changes when {approve} or {transferFrom} are called.
                 */
                function allowance(address owner, address spender) external view returns (uint256);
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * IMPORTANT: Beware that changing an allowance with this method brings the risk
                 * that someone may use both the old and the new allowance by unfortunate
                 * transaction ordering. One possible solution to mitigate this race
                 * condition is to first reduce the spender's allowance to 0 and set the
                 * desired value afterwards:
                 * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                 *
                 * Emits an {Approval} event.
                 */
                function approve(address spender, uint256 amount) external returns (bool);
                /**
                 * @dev Moves `amount` tokens from `from` to `to` using the
                 * allowance mechanism. `amount` is then deducted from the caller's
                 * allowance.
                 *
                 * Returns a boolean value indicating whether the operation succeeded.
                 *
                 * Emits a {Transfer} event.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 amount
                ) external returns (bool);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { ISemver } from "src/universal/ISemver.sol";
            import { Constants } from "src/libraries/Constants.sol";
            import { GasPayingToken, IGasToken } from "src/libraries/GasPayingToken.sol";
            import "src/libraries/L1BlockErrors.sol";
            /// @custom:proxied
            /// @custom:predeploy 0x4200000000000000000000000000000000000015
            /// @title L1Block
            /// @notice The L1Block predeploy gives users access to information about the last known L1 block.
            ///         Values within this contract are updated once per epoch (every L1 block) and can only be
            ///         set by the "depositor" account, a special system address. Depositor account transactions
            ///         are created by the protocol whenever we move to a new epoch.
            contract L1Block is ISemver, IGasToken {
                /// @notice Event emitted when the gas paying token is set.
                event GasPayingTokenSet(address indexed token, uint8 indexed decimals, bytes32 name, bytes32 symbol);
                /// @notice Address of the special depositor account.
                function DEPOSITOR_ACCOUNT() public pure returns (address addr_) {
                    addr_ = Constants.DEPOSITOR_ACCOUNT;
                }
                /// @notice The latest L1 block number known by the L2 system.
                uint64 public number;
                /// @notice The latest L1 timestamp known by the L2 system.
                uint64 public timestamp;
                /// @notice The latest L1 base fee.
                uint256 public basefee;
                /// @notice The latest L1 blockhash.
                bytes32 public hash;
                /// @notice The number of L2 blocks in the same epoch.
                uint64 public sequenceNumber;
                /// @notice The scalar value applied to the L1 blob base fee portion of the blob-capable L1 cost func.
                uint32 public blobBaseFeeScalar;
                /// @notice The scalar value applied to the L1 base fee portion of the blob-capable L1 cost func.
                uint32 public baseFeeScalar;
                /// @notice The versioned hash to authenticate the batcher by.
                bytes32 public batcherHash;
                /// @notice The overhead value applied to the L1 portion of the transaction fee.
                /// @custom:legacy
                uint256 public l1FeeOverhead;
                /// @notice The scalar value applied to the L1 portion of the transaction fee.
                /// @custom:legacy
                uint256 public l1FeeScalar;
                /// @notice The latest L1 blob base fee.
                uint256 public blobBaseFee;
                /// @custom:semver 1.4.1-beta.1
                function version() public pure virtual returns (string memory) {
                    return "1.4.1-beta.1";
                }
                /// @notice Returns the gas paying token, its decimals, name and symbol.
                ///         If nothing is set in state, then it means ether is used.
                function gasPayingToken() public view returns (address addr_, uint8 decimals_) {
                    (addr_, decimals_) = GasPayingToken.getToken();
                }
                /// @notice Returns the gas paying token name.
                ///         If nothing is set in state, then it means ether is used.
                function gasPayingTokenName() public view returns (string memory name_) {
                    name_ = GasPayingToken.getName();
                }
                /// @notice Returns the gas paying token symbol.
                ///         If nothing is set in state, then it means ether is used.
                function gasPayingTokenSymbol() public view returns (string memory symbol_) {
                    symbol_ = GasPayingToken.getSymbol();
                }
                /// @notice Getter for custom gas token paying networks. Returns true if the
                ///         network uses a custom gas token.
                function isCustomGasToken() public view returns (bool) {
                    (address token,) = gasPayingToken();
                    return token != Constants.ETHER;
                }
                /// @custom:legacy
                /// @notice Updates the L1 block values.
                /// @param _number         L1 blocknumber.
                /// @param _timestamp      L1 timestamp.
                /// @param _basefee        L1 basefee.
                /// @param _hash           L1 blockhash.
                /// @param _sequenceNumber Number of L2 blocks since epoch start.
                /// @param _batcherHash    Versioned hash to authenticate batcher by.
                /// @param _l1FeeOverhead  L1 fee overhead.
                /// @param _l1FeeScalar    L1 fee scalar.
                function setL1BlockValues(
                    uint64 _number,
                    uint64 _timestamp,
                    uint256 _basefee,
                    bytes32 _hash,
                    uint64 _sequenceNumber,
                    bytes32 _batcherHash,
                    uint256 _l1FeeOverhead,
                    uint256 _l1FeeScalar
                )
                    external
                {
                    require(msg.sender == DEPOSITOR_ACCOUNT(), "L1Block: only the depositor account can set L1 block values");
                    number = _number;
                    timestamp = _timestamp;
                    basefee = _basefee;
                    hash = _hash;
                    sequenceNumber = _sequenceNumber;
                    batcherHash = _batcherHash;
                    l1FeeOverhead = _l1FeeOverhead;
                    l1FeeScalar = _l1FeeScalar;
                }
                /// @notice Updates the L1 block values for an Ecotone upgraded chain.
                /// Params are packed and passed in as raw msg.data instead of ABI to reduce calldata size.
                /// Params are expected to be in the following order:
                ///   1. _baseFeeScalar      L1 base fee scalar
                ///   2. _blobBaseFeeScalar  L1 blob base fee scalar
                ///   3. _sequenceNumber     Number of L2 blocks since epoch start.
                ///   4. _timestamp          L1 timestamp.
                ///   5. _number             L1 blocknumber.
                ///   6. _basefee            L1 base fee.
                ///   7. _blobBaseFee        L1 blob base fee.
                ///   8. _hash               L1 blockhash.
                ///   9. _batcherHash        Versioned hash to authenticate batcher by.
                function setL1BlockValuesEcotone() external {
                    address depositor = DEPOSITOR_ACCOUNT();
                    assembly {
                        // Revert if the caller is not the depositor account.
                        if xor(caller(), depositor) {
                            mstore(0x00, 0x3cc50b45) // 0x3cc50b45 is the 4-byte selector of "NotDepositor()"
                            revert(0x1C, 0x04) // returns the stored 4-byte selector from above
                        }
                        // sequencenum (uint64), blobBaseFeeScalar (uint32), baseFeeScalar (uint32)
                        sstore(sequenceNumber.slot, shr(128, calldataload(4)))
                        // number (uint64) and timestamp (uint64)
                        sstore(number.slot, shr(128, calldataload(20)))
                        sstore(basefee.slot, calldataload(36)) // uint256
                        sstore(blobBaseFee.slot, calldataload(68)) // uint256
                        sstore(hash.slot, calldataload(100)) // bytes32
                        sstore(batcherHash.slot, calldataload(132)) // bytes32
                    }
                }
                /// @notice Sets the gas paying token for the L2 system. Can only be called by the special
                ///         depositor account. This function is not called on every L2 block but instead
                ///         only called by specially crafted L1 deposit transactions.
                function setGasPayingToken(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) external {
                    if (msg.sender != DEPOSITOR_ACCOUNT()) revert NotDepositor();
                    GasPayingToken.set({ _token: _token, _decimals: _decimals, _name: _name, _symbol: _symbol });
                    emit GasPayingTokenSet({ token: _token, decimals: _decimals, name: _name, symbol: _symbol });
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Predeploys
            /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system.
            //          This excludes the preinstalls (non-protocol contracts).
            library Predeploys {
                /// @notice Number of predeploy-namespace addresses reserved for protocol usage.
                uint256 internal constant PREDEPLOY_COUNT = 2048;
                /// @custom:legacy
                /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
                ///         L2ToL1MessagePasser contract instead.
                address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
                /// @custom:legacy
                /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
                ///         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
                ///         Not embedded into new OP-Stack chains.
                address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
                /// @custom:legacy
                /// @notice Address of the DeployerWhitelist predeploy. No longer active.
                address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
                /// @notice Address of the canonical WETH contract.
                address internal constant WETH = 0x4200000000000000000000000000000000000006;
                /// @notice Address of the L2CrossDomainMessenger predeploy.
                address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007;
                /// @notice Address of the GasPriceOracle predeploy. Includes fee information
                ///         and helpers for computing the L1 portion of the transaction fee.
                address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
                /// @notice Address of the L2StandardBridge predeploy.
                address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
                //// @notice Address of the SequencerFeeWallet predeploy.
                address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
                /// @notice Address of the OptimismMintableERC20Factory predeploy.
                address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012;
                /// @custom:legacy
                /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
                ///         instead, which exposes more information about the L1 state.
                address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
                /// @notice Address of the L2ERC721Bridge predeploy.
                address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
                /// @notice Address of the L1Block predeploy.
                address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
                /// @notice Address of the L2ToL1MessagePasser predeploy.
                address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
                /// @notice Address of the OptimismMintableERC721Factory predeploy.
                address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017;
                /// @notice Address of the ProxyAdmin predeploy.
                address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
                /// @notice Address of the BaseFeeVault predeploy.
                address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
                /// @notice Address of the L1FeeVault predeploy.
                address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
                /// @notice Address of the SchemaRegistry predeploy.
                address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020;
                /// @notice Address of the EAS predeploy.
                address internal constant EAS = 0x4200000000000000000000000000000000000021;
                /// @notice Address of the GovernanceToken predeploy.
                address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
                /// @custom:legacy
                /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
                ///         state trie as of the Bedrock upgrade. Contract has been locked and write functions
                ///         can no longer be accessed.
                address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
                /// @notice Address of the CrossL2Inbox predeploy.
                address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022;
                /// @notice Address of the L2ToL2CrossDomainMessenger predeploy.
                address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023;
                /// @notice Returns the name of the predeploy at the given address.
                function getName(address _addr) internal pure returns (string memory out_) {
                    require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy");
                    if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser";
                    if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender";
                    if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist";
                    if (_addr == WETH) return "WETH";
                    if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger";
                    if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle";
                    if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge";
                    if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault";
                    if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory";
                    if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber";
                    if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge";
                    if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block";
                    if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser";
                    if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory";
                    if (_addr == PROXY_ADMIN) return "ProxyAdmin";
                    if (_addr == BASE_FEE_VAULT) return "BaseFeeVault";
                    if (_addr == L1_FEE_VAULT) return "L1FeeVault";
                    if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry";
                    if (_addr == EAS) return "EAS";
                    if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken";
                    if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH";
                    if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox";
                    if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger";
                    revert("Predeploys: unnamed predeploy");
                }
                /// @notice Returns true if the predeploy is not proxied.
                function notProxied(address _addr) internal pure returns (bool) {
                    return _addr == GOVERNANCE_TOKEN || _addr == WETH;
                }
                /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains.
                function isSupportedPredeploy(address _addr, bool _useInterop) internal pure returns (bool) {
                    return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH
                        || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE
                        || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER
                        || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER
                        || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT
                        || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN
                        || (_useInterop && _addr == CROSS_L2_INBOX) || (_useInterop && _addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER);
                }
                function isPredeployNamespace(address _addr) internal pure returns (bool) {
                    return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11;
                }
                /// @notice Function to compute the expected address of the predeploy implementation
                ///         in the genesis state.
                function predeployToCodeNamespace(address _addr) internal pure returns (address) {
                    require(
                        isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses"
                    );
                    return address(
                        uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000)))
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @notice Error for when a deposit or withdrawal is to a bad target.
            error BadTarget();
            /// @notice Error for when a deposit has too much calldata.
            error LargeCalldata();
            /// @notice Error for when a deposit has too small of a gas limit.
            error SmallGasLimit();
            /// @notice Error for when a withdrawal transfer fails.
            error TransferFailed();
            /// @notice Error for when a method is called that only works when using a custom gas token.
            error OnlyCustomGasToken();
            /// @notice Error for when a method cannot be called with non zero CALLVALUE.
            error NoValue();
            /// @notice Error for an unauthorized CALLER.
            error Unauthorized();
            /// @notice Error for when a method cannot be called when paused. This could be renamed
            ///         to `Paused` in the future, but it collides with the `Paused` event.
            error CallPaused();
            /// @notice Error for special gas estimation.
            error GasEstimation();
            /// @notice Error for when a method is being reentered.
            error NonReentrant();
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
            pragma solidity ^0.8.0;
            import "../utils/ContextUpgradeable.sol";
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Contract module which provides a basic access control mechanism, where
             * there is an account (an owner) that can be granted exclusive access to
             * specific functions.
             *
             * By default, the owner account will be the one that deploys the contract. This
             * can later be changed with {transferOwnership}.
             *
             * This module is used through inheritance. It will make available the modifier
             * `onlyOwner`, which can be applied to your functions to restrict their use to
             * the owner.
             */
            abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
                address private _owner;
                event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
                /**
                 * @dev Initializes the contract setting the deployer as the initial owner.
                 */
                function __Ownable_init() internal onlyInitializing {
                    __Ownable_init_unchained();
                }
                function __Ownable_init_unchained() internal onlyInitializing {
                    _transferOwnership(_msgSender());
                }
                /**
                 * @dev Throws if called by any account other than the owner.
                 */
                modifier onlyOwner() {
                    _checkOwner();
                    _;
                }
                /**
                 * @dev Returns the address of the current owner.
                 */
                function owner() public view virtual returns (address) {
                    return _owner;
                }
                /**
                 * @dev Throws if the sender is not the owner.
                 */
                function _checkOwner() internal view virtual {
                    require(owner() == _msgSender(), "Ownable: caller is not the owner");
                }
                /**
                 * @dev Leaves the contract without owner. It will not be possible to call
                 * `onlyOwner` functions anymore. Can only be called by the current owner.
                 *
                 * NOTE: Renouncing ownership will leave the contract without an owner,
                 * thereby removing any functionality that is only available to the owner.
                 */
                function renounceOwnership() public virtual onlyOwner {
                    _transferOwnership(address(0));
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Can only be called by the current owner.
                 */
                function transferOwnership(address newOwner) public virtual onlyOwner {
                    require(newOwner != address(0), "Ownable: new owner is the zero address");
                    _transferOwnership(newOwner);
                }
                /**
                 * @dev Transfers ownership of the contract to a new account (`newOwner`).
                 * Internal function without access restriction.
                 */
                function _transferOwnership(address newOwner) internal virtual {
                    address oldOwner = _owner;
                    _owner = newOwner;
                    emit OwnershipTransferred(oldOwner, newOwner);
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[49] private __gap;
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Storage
            /// @notice Storage handles reading and writing to arbitary storage locations
            library Storage {
                /// @notice Returns an address stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getAddress(bytes32 _slot) internal view returns (address addr_) {
                    assembly {
                        addr_ := sload(_slot)
                    }
                }
                /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _address The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                ///      in arbitrary storage slots.
                function setAddress(bytes32 _slot, address _address) internal {
                    assembly {
                        sstore(_slot, _address)
                    }
                }
                /// @notice Returns a uint256 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setUint(bytes32 _slot, uint256 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The bytes32 value to store.
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBytes32(bytes32 _slot, bytes32 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the bool in.
                /// @param _value The bool value to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBool(bytes32 _slot, bool _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bool stored in an arbitrary storage slot.
                /// @param _slot The storage slot to retrieve the bool from.
                function getBool(bytes32 _slot) internal view returns (bool value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Storage } from "src/libraries/Storage.sol";
            import { Constants } from "src/libraries/Constants.sol";
            import { LibString } from "@solady/utils/LibString.sol";
            /// @title IGasToken
            /// @notice Implemented by contracts that are aware of the custom gas token used
            ///         by the L2 network.
            interface IGasToken {
                /// @notice Getter for the ERC20 token address that is used to pay for gas and its decimals.
                function gasPayingToken() external view returns (address, uint8);
                /// @notice Returns the gas token name.
                function gasPayingTokenName() external view returns (string memory);
                /// @notice Returns the gas token symbol.
                function gasPayingTokenSymbol() external view returns (string memory);
                /// @notice Returns true if the network uses a custom gas token.
                function isCustomGasToken() external view returns (bool);
            }
            /// @title GasPayingToken
            /// @notice Handles reading and writing the custom gas token to storage.
            ///         To be used in any place where gas token information is read or
            ///         written to state. If multiple contracts use this library, the
            ///         values in storage should be kept in sync between them.
            library GasPayingToken {
                /// @notice The storage slot that contains the address and decimals of the gas paying token
                bytes32 internal constant GAS_PAYING_TOKEN_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtoken")) - 1);
                /// @notice The storage slot that contains the ERC20 `name()` of the gas paying token
                bytes32 internal constant GAS_PAYING_TOKEN_NAME_SLOT = bytes32(uint256(keccak256("opstack.gaspayingtokenname")) - 1);
                /// @notice the storage slot that contains the ERC20 `symbol()` of the gas paying token
                bytes32 internal constant GAS_PAYING_TOKEN_SYMBOL_SLOT =
                    bytes32(uint256(keccak256("opstack.gaspayingtokensymbol")) - 1);
                /// @notice Reads the gas paying token and its decimals from the magic
                ///         storage slot. If nothing is set in storage, then the ether
                ///         address is returned instead.
                function getToken() internal view returns (address addr_, uint8 decimals_) {
                    bytes32 slot = Storage.getBytes32(GAS_PAYING_TOKEN_SLOT);
                    addr_ = address(uint160(uint256(slot) & uint256(type(uint160).max)));
                    if (addr_ == address(0)) {
                        addr_ = Constants.ETHER;
                        decimals_ = 18;
                    } else {
                        decimals_ = uint8(uint256(slot) >> 160);
                    }
                }
                /// @notice Reads the gas paying token's name from the magic storage slot.
                ///         If nothing is set in storage, then the ether name, 'Ether', is returned instead.
                function getName() internal view returns (string memory name_) {
                    (address addr,) = getToken();
                    if (addr == Constants.ETHER) {
                        name_ = "Ether";
                    } else {
                        name_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_NAME_SLOT));
                    }
                }
                /// @notice Reads the gas paying token's symbol from the magic storage slot.
                ///         If nothing is set in storage, then the ether symbol, 'ETH', is returned instead.
                function getSymbol() internal view returns (string memory symbol_) {
                    (address addr,) = getToken();
                    if (addr == Constants.ETHER) {
                        symbol_ = "ETH";
                    } else {
                        symbol_ = LibString.fromSmallString(Storage.getBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT));
                    }
                }
                /// @notice Writes the gas paying token, its decimals, name and symbol to the magic storage slot.
                function set(address _token, uint8 _decimals, bytes32 _name, bytes32 _symbol) internal {
                    Storage.setBytes32(GAS_PAYING_TOKEN_SLOT, bytes32(uint256(_decimals) << 160 | uint256(uint160(_token))));
                    Storage.setBytes32(GAS_PAYING_TOKEN_NAME_SLOT, _name);
                    Storage.setBytes32(GAS_PAYING_TOKEN_SYMBOL_SLOT, _symbol);
                }
                /// @notice Maps a string to a normalized null-terminated small string.
                function sanitize(string memory _str) internal pure returns (bytes32) {
                    require(bytes(_str).length <= 32, "GasPayingToken: string cannot be greater than 32 bytes");
                    return LibString.toSmallString(_str);
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)
            pragma solidity ^0.8.0;
            import "./IERC20.sol";
            import "./extensions/IERC20Metadata.sol";
            import "../../utils/Context.sol";
            /**
             * @dev Implementation of the {IERC20} interface.
             *
             * This implementation is agnostic to the way tokens are created. This means
             * that a supply mechanism has to be added in a derived contract using {_mint}.
             * For a generic mechanism see {ERC20PresetMinterPauser}.
             *
             * TIP: For a detailed writeup see our guide
             * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
             * to implement supply mechanisms].
             *
             * We have followed general OpenZeppelin Contracts guidelines: functions revert
             * instead returning `false` on failure. This behavior is nonetheless
             * conventional and does not conflict with the expectations of ERC20
             * applications.
             *
             * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
             * This allows applications to reconstruct the allowance for all accounts just
             * by listening to said events. Other implementations of the EIP may not emit
             * these events, as it isn't required by the specification.
             *
             * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
             * functions have been added to mitigate the well-known issues around setting
             * allowances. See {IERC20-approve}.
             */
            contract ERC20 is Context, IERC20, IERC20Metadata {
                mapping(address => uint256) private _balances;
                mapping(address => mapping(address => uint256)) private _allowances;
                uint256 private _totalSupply;
                string private _name;
                string private _symbol;
                /**
                 * @dev Sets the values for {name} and {symbol}.
                 *
                 * The default value of {decimals} is 18. To select a different value for
                 * {decimals} you should overload it.
                 *
                 * All two of these values are immutable: they can only be set once during
                 * construction.
                 */
                constructor(string memory name_, string memory symbol_) {
                    _name = name_;
                    _symbol = symbol_;
                }
                /**
                 * @dev Returns the name of the token.
                 */
                function name() public view virtual override returns (string memory) {
                    return _name;
                }
                /**
                 * @dev Returns the symbol of the token, usually a shorter version of the
                 * name.
                 */
                function symbol() public view virtual override returns (string memory) {
                    return _symbol;
                }
                /**
                 * @dev Returns the number of decimals used to get its user representation.
                 * For example, if `decimals` equals `2`, a balance of `505` tokens should
                 * be displayed to a user as `5.05` (`505 / 10 ** 2`).
                 *
                 * Tokens usually opt for a value of 18, imitating the relationship between
                 * Ether and Wei. This is the value {ERC20} uses, unless this function is
                 * overridden;
                 *
                 * NOTE: This information is only used for _display_ purposes: it in
                 * no way affects any of the arithmetic of the contract, including
                 * {IERC20-balanceOf} and {IERC20-transfer}.
                 */
                function decimals() public view virtual override returns (uint8) {
                    return 18;
                }
                /**
                 * @dev See {IERC20-totalSupply}.
                 */
                function totalSupply() public view virtual override returns (uint256) {
                    return _totalSupply;
                }
                /**
                 * @dev See {IERC20-balanceOf}.
                 */
                function balanceOf(address account) public view virtual override returns (uint256) {
                    return _balances[account];
                }
                /**
                 * @dev See {IERC20-transfer}.
                 *
                 * Requirements:
                 *
                 * - `to` cannot be the zero address.
                 * - the caller must have a balance of at least `amount`.
                 */
                function transfer(address to, uint256 amount) public virtual override returns (bool) {
                    address owner = _msgSender();
                    _transfer(owner, to, amount);
                    return true;
                }
                /**
                 * @dev See {IERC20-allowance}.
                 */
                function allowance(address owner, address spender) public view virtual override returns (uint256) {
                    return _allowances[owner][spender];
                }
                /**
                 * @dev See {IERC20-approve}.
                 *
                 * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
                 * `transferFrom`. This is semantically equivalent to an infinite approval.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function approve(address spender, uint256 amount) public virtual override returns (bool) {
                    address owner = _msgSender();
                    _approve(owner, spender, amount);
                    return true;
                }
                /**
                 * @dev See {IERC20-transferFrom}.
                 *
                 * Emits an {Approval} event indicating the updated allowance. This is not
                 * required by the EIP. See the note at the beginning of {ERC20}.
                 *
                 * NOTE: Does not update the allowance if the current allowance
                 * is the maximum `uint256`.
                 *
                 * Requirements:
                 *
                 * - `from` and `to` cannot be the zero address.
                 * - `from` must have a balance of at least `amount`.
                 * - the caller must have allowance for ``from``'s tokens of at least
                 * `amount`.
                 */
                function transferFrom(
                    address from,
                    address to,
                    uint256 amount
                ) public virtual override returns (bool) {
                    address spender = _msgSender();
                    _spendAllowance(from, spender, amount);
                    _transfer(from, to, amount);
                    return true;
                }
                /**
                 * @dev Atomically increases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 */
                function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
                    address owner = _msgSender();
                    _approve(owner, spender, allowance(owner, spender) + addedValue);
                    return true;
                }
                /**
                 * @dev Atomically decreases the allowance granted to `spender` by the caller.
                 *
                 * This is an alternative to {approve} that can be used as a mitigation for
                 * problems described in {IERC20-approve}.
                 *
                 * Emits an {Approval} event indicating the updated allowance.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `spender` must have allowance for the caller of at least
                 * `subtractedValue`.
                 */
                function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
                    address owner = _msgSender();
                    uint256 currentAllowance = allowance(owner, spender);
                    require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
                    unchecked {
                        _approve(owner, spender, currentAllowance - subtractedValue);
                    }
                    return true;
                }
                /**
                 * @dev Moves `amount` of tokens from `from` to `to`.
                 *
                 * This internal function is equivalent to {transfer}, and can be used to
                 * e.g. implement automatic token fees, slashing mechanisms, etc.
                 *
                 * Emits a {Transfer} event.
                 *
                 * Requirements:
                 *
                 * - `from` cannot be the zero address.
                 * - `to` cannot be the zero address.
                 * - `from` must have a balance of at least `amount`.
                 */
                function _transfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {
                    require(from != address(0), "ERC20: transfer from the zero address");
                    require(to != address(0), "ERC20: transfer to the zero address");
                    _beforeTokenTransfer(from, to, amount);
                    uint256 fromBalance = _balances[from];
                    require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
                    unchecked {
                        _balances[from] = fromBalance - amount;
                    }
                    _balances[to] += amount;
                    emit Transfer(from, to, amount);
                    _afterTokenTransfer(from, to, amount);
                }
                /** @dev Creates `amount` tokens and assigns them to `account`, increasing
                 * the total supply.
                 *
                 * Emits a {Transfer} event with `from` set to the zero address.
                 *
                 * Requirements:
                 *
                 * - `account` cannot be the zero address.
                 */
                function _mint(address account, uint256 amount) internal virtual {
                    require(account != address(0), "ERC20: mint to the zero address");
                    _beforeTokenTransfer(address(0), account, amount);
                    _totalSupply += amount;
                    _balances[account] += amount;
                    emit Transfer(address(0), account, amount);
                    _afterTokenTransfer(address(0), account, amount);
                }
                /**
                 * @dev Destroys `amount` tokens from `account`, reducing the
                 * total supply.
                 *
                 * Emits a {Transfer} event with `to` set to the zero address.
                 *
                 * Requirements:
                 *
                 * - `account` cannot be the zero address.
                 * - `account` must have at least `amount` tokens.
                 */
                function _burn(address account, uint256 amount) internal virtual {
                    require(account != address(0), "ERC20: burn from the zero address");
                    _beforeTokenTransfer(account, address(0), amount);
                    uint256 accountBalance = _balances[account];
                    require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
                    unchecked {
                        _balances[account] = accountBalance - amount;
                    }
                    _totalSupply -= amount;
                    emit Transfer(account, address(0), amount);
                    _afterTokenTransfer(account, address(0), amount);
                }
                /**
                 * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
                 *
                 * This internal function is equivalent to `approve`, and can be used to
                 * e.g. set automatic allowances for certain subsystems, etc.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `owner` cannot be the zero address.
                 * - `spender` cannot be the zero address.
                 */
                function _approve(
                    address owner,
                    address spender,
                    uint256 amount
                ) internal virtual {
                    require(owner != address(0), "ERC20: approve from the zero address");
                    require(spender != address(0), "ERC20: approve to the zero address");
                    _allowances[owner][spender] = amount;
                    emit Approval(owner, spender, amount);
                }
                /**
                 * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
                 *
                 * Does not update the allowance amount in case of infinite allowance.
                 * Revert if not enough allowance is available.
                 *
                 * Might emit an {Approval} event.
                 */
                function _spendAllowance(
                    address owner,
                    address spender,
                    uint256 amount
                ) internal virtual {
                    uint256 currentAllowance = allowance(owner, spender);
                    if (currentAllowance != type(uint256).max) {
                        require(currentAllowance >= amount, "ERC20: insufficient allowance");
                        unchecked {
                            _approve(owner, spender, currentAllowance - amount);
                        }
                    }
                }
                /**
                 * @dev Hook that is called before any transfer of tokens. This includes
                 * minting and burning.
                 *
                 * Calling conditions:
                 *
                 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                 * will be transferred to `to`.
                 * - when `from` is zero, `amount` tokens will be minted for `to`.
                 * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
                 * - `from` and `to` are never both zero.
                 *
                 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                 */
                function _beforeTokenTransfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {}
                /**
                 * @dev Hook that is called after any transfer of tokens. This includes
                 * minting and burning.
                 *
                 * Calling conditions:
                 *
                 * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
                 * has been transferred to `to`.
                 * - when `from` is zero, `amount` tokens have been minted for `to`.
                 * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
                 * - `from` and `to` are never both zero.
                 *
                 * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
                 */
                function _afterTokenTransfer(
                    address from,
                    address to,
                    uint256 amount
                ) internal virtual {}
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Types } from "src/libraries/Types.sol";
            import { Hashing } from "src/libraries/Hashing.sol";
            import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol";
            /// @title Encoding
            /// @notice Encoding handles Optimism's various different encoding schemes.
            library Encoding {
                /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
                ///         to the L2 system. Useful for searching for a deposit in the L2 system. The
                ///         transaction is prefixed with 0x7e to identify its EIP-2718 type.
                /// @param _tx User deposit transaction to encode.
                /// @return RLP encoded L2 deposit transaction.
                function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) {
                    bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
                    bytes[] memory raw = new bytes[](8);
                    raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
                    raw[1] = RLPWriter.writeAddress(_tx.from);
                    raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
                    raw[3] = RLPWriter.writeUint(_tx.mint);
                    raw[4] = RLPWriter.writeUint(_tx.value);
                    raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
                    raw[6] = RLPWriter.writeBool(false);
                    raw[7] = RLPWriter.writeBytes(_tx.data);
                    return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
                }
                /// @notice Encodes the cross domain message based on the version that is encoded into the
                ///         message nonce.
                /// @param _nonce    Message nonce with version encoded into the first two bytes.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessage(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    (, uint16 version) = decodeVersionedNonce(_nonce);
                    if (version == 0) {
                        return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
                    } else if (version == 1) {
                        return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
                    } else {
                        revert("Encoding: unknown cross domain message version");
                    }
                }
                /// @notice Encodes a cross domain message based on the V0 (legacy) encoding.
                /// @param _target Address of the target of the message.
                /// @param _sender Address of the sender of the message.
                /// @param _data   Data to send with the message.
                /// @param _nonce  Message nonce.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessageV0(
                    address _target,
                    address _sender,
                    bytes memory _data,
                    uint256 _nonce
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce);
                }
                /// @notice Encodes a cross domain message based on the V1 (current) encoding.
                /// @param _nonce    Message nonce.
                /// @param _sender   Address of the sender of the message.
                /// @param _target   Address of the target of the message.
                /// @param _value    ETH value to send to the target.
                /// @param _gasLimit Gas limit to use for the message.
                /// @param _data     Data to send with the message.
                /// @return Encoded cross domain message.
                function encodeCrossDomainMessageV1(
                    uint256 _nonce,
                    address _sender,
                    address _target,
                    uint256 _value,
                    uint256 _gasLimit,
                    bytes memory _data
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    return abi.encodeWithSignature(
                        "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                        _nonce,
                        _sender,
                        _target,
                        _value,
                        _gasLimit,
                        _data
                    );
                }
                /// @notice Adds a version number into the first two bytes of a message nonce.
                /// @param _nonce   Message nonce to encode into.
                /// @param _version Version number to encode into the message nonce.
                /// @return Message nonce with version encoded into the first two bytes.
                function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
                    uint256 nonce;
                    assembly {
                        nonce := or(shl(240, _version), _nonce)
                    }
                    return nonce;
                }
                /// @notice Pulls the version out of a version-encoded nonce.
                /// @param _nonce Message nonce with version encoded into the first two bytes.
                /// @return Nonce without encoded version.
                /// @return Version of the message.
                function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
                    uint240 nonce;
                    uint16 version;
                    assembly {
                        nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
                        version := shr(240, _nonce)
                    }
                    return (nonce, version);
                }
                /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone
                /// @param baseFeeScalar       L1 base fee Scalar
                /// @param blobBaseFeeScalar   L1 blob base fee Scalar
                /// @param sequenceNumber      Number of L2 blocks since epoch start.
                /// @param timestamp           L1 timestamp.
                /// @param number              L1 blocknumber.
                /// @param baseFee             L1 base fee.
                /// @param blobBaseFee         L1 blob base fee.
                /// @param hash                L1 blockhash.
                /// @param batcherHash         Versioned hash to authenticate batcher by.
                function encodeSetL1BlockValuesEcotone(
                    uint32 baseFeeScalar,
                    uint32 blobBaseFeeScalar,
                    uint64 sequenceNumber,
                    uint64 timestamp,
                    uint64 number,
                    uint256 baseFee,
                    uint256 blobBaseFee,
                    bytes32 hash,
                    bytes32 batcherHash
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()"));
                    return abi.encodePacked(
                        functionSignature,
                        baseFeeScalar,
                        blobBaseFeeScalar,
                        sequenceNumber,
                        timestamp,
                        number,
                        baseFee,
                        blobBaseFee,
                        hash,
                        batcherHash
                    );
                }
                /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop
                /// @param _baseFeeScalar       L1 base fee Scalar
                /// @param _blobBaseFeeScalar   L1 blob base fee Scalar
                /// @param _sequenceNumber      Number of L2 blocks since epoch start.
                /// @param _timestamp           L1 timestamp.
                /// @param _number              L1 blocknumber.
                /// @param _baseFee             L1 base fee.
                /// @param _blobBaseFee         L1 blob base fee.
                /// @param _hash                L1 blockhash.
                /// @param _batcherHash         Versioned hash to authenticate batcher by.
                /// @param _dependencySet       Array of the chain IDs in the interop dependency set.
                function encodeSetL1BlockValuesInterop(
                    uint32 _baseFeeScalar,
                    uint32 _blobBaseFeeScalar,
                    uint64 _sequenceNumber,
                    uint64 _timestamp,
                    uint64 _number,
                    uint256 _baseFee,
                    uint256 _blobBaseFee,
                    bytes32 _hash,
                    bytes32 _batcherHash,
                    uint256[] memory _dependencySet
                )
                    internal
                    pure
                    returns (bytes memory)
                {
                    require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large");
                    // Check that the batcher hash is just the address with 0 padding to the left for version 0.
                    require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash");
                    bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()"));
                    return abi.encodePacked(
                        functionSignature,
                        _baseFeeScalar,
                        _blobBaseFeeScalar,
                        _sequenceNumber,
                        _timestamp,
                        _number,
                        _baseFee,
                        _blobBaseFee,
                        _hash,
                        _batcherHash,
                        uint8(_dependencySet.length),
                        _dependencySet
                    );
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { Bytes } from "../Bytes.sol";
            import { RLPReader } from "../rlp/RLPReader.sol";
            /// @title MerkleTrie
            /// @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
            ///         inclusion proofs. By default, this library assumes a hexary trie. One can change the
            ///         trie radix constant to support other trie radixes.
            library MerkleTrie {
                /// @notice Struct representing a node in the trie.
                /// @custom:field encoded The RLP-encoded node.
                /// @custom:field decoded The RLP-decoded node.
                struct TrieNode {
                    bytes encoded;
                    RLPReader.RLPItem[] decoded;
                }
                /// @notice Determines the number of elements per branch node.
                uint256 internal constant TREE_RADIX = 16;
                /// @notice Branch nodes have TREE_RADIX elements and one value element.
                uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
                /// @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
                uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
                /// @notice Prefix for even-nibbled extension node paths.
                uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
                /// @notice Prefix for odd-nibbled extension node paths.
                uint8 internal constant PREFIX_EXTENSION_ODD = 1;
                /// @notice Prefix for even-nibbled leaf node paths.
                uint8 internal constant PREFIX_LEAF_EVEN = 2;
                /// @notice Prefix for odd-nibbled leaf node paths.
                uint8 internal constant PREFIX_LEAF_ODD = 3;
                /// @notice Verifies a proof that a given key/value pair is present in the trie.
                /// @param _key   Key of the node to search for, as a hex string.
                /// @param _value Value of the node to search for, as a hex string.
                /// @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
                ///               trees, this proof is executed top-down and consists of a list of RLP-encoded
                ///               nodes that make a path down to the target node.
                /// @param _root  Known root of the Merkle trie. Used to verify that the included proof is
                ///               correctly constructed.
                /// @return valid_ Whether or not the proof is valid.
                function verifyInclusionProof(
                    bytes memory _key,
                    bytes memory _value,
                    bytes[] memory _proof,
                    bytes32 _root
                )
                    internal
                    pure
                    returns (bool valid_)
                {
                    valid_ = Bytes.equal(_value, get(_key, _proof, _root));
                }
                /// @notice Retrieves the value associated with a given key.
                /// @param _key   Key to search for, as hex bytes.
                /// @param _proof Merkle trie inclusion proof for the key.
                /// @param _root  Known root of the Merkle trie.
                /// @return value_ Value of the key if it exists.
                function get(bytes memory _key, bytes[] memory _proof, bytes32 _root) internal pure returns (bytes memory value_) {
                    require(_key.length > 0, "MerkleTrie: empty key");
                    TrieNode[] memory proof = _parseProof(_proof);
                    bytes memory key = Bytes.toNibbles(_key);
                    bytes memory currentNodeID = abi.encodePacked(_root);
                    uint256 currentKeyIndex = 0;
                    // Proof is top-down, so we start at the first element (root).
                    for (uint256 i = 0; i < proof.length; i++) {
                        TrieNode memory currentNode = proof[i];
                        // Key index should never exceed total key length or we'll be out of bounds.
                        require(currentKeyIndex <= key.length, "MerkleTrie: key index exceeds total key length");
                        if (currentKeyIndex == 0) {
                            // First proof element is always the root node.
                            require(
                                Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                "MerkleTrie: invalid root hash"
                            );
                        } else if (currentNode.encoded.length >= 32) {
                            // Nodes 32 bytes or larger are hashed inside branch nodes.
                            require(
                                Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
                                "MerkleTrie: invalid large internal hash"
                            );
                        } else {
                            // Nodes smaller than 32 bytes aren't hashed.
                            require(Bytes.equal(currentNode.encoded, currentNodeID), "MerkleTrie: invalid internal node hash");
                        }
                        if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
                            if (currentKeyIndex == key.length) {
                                // Value is the last element of the decoded list (for branch nodes). There's
                                // some ambiguity in the Merkle trie specification because bytes(0) is a
                                // valid value to place into the trie, but for branch nodes bytes(0) can exist
                                // even when the value wasn't explicitly placed there. Geth treats a value of
                                // bytes(0) as "key does not exist" and so we do the same.
                                value_ = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
                                require(value_.length > 0, "MerkleTrie: value length must be greater than zero (branch)");
                                // Extra proof elements are not allowed.
                                require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (branch)");
                                return value_;
                            } else {
                                // We're not at the end of the key yet.
                                // Figure out what the next node ID should be and continue.
                                uint8 branchKey = uint8(key[currentKeyIndex]);
                                RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
                                currentNodeID = _getNodeID(nextNode);
                                currentKeyIndex += 1;
                            }
                        } else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
                            bytes memory path = _getNodePath(currentNode);
                            uint8 prefix = uint8(path[0]);
                            uint8 offset = 2 - (prefix % 2);
                            bytes memory pathRemainder = Bytes.slice(path, offset);
                            bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
                            uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
                            // Whether this is a leaf node or an extension node, the path remainder MUST be a
                            // prefix of the key remainder (or be equal to the key remainder) or the proof is
                            // considered invalid.
                            require(
                                pathRemainder.length == sharedNibbleLength,
                                "MerkleTrie: path remainder must share all nibbles with key"
                            );
                            if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
                                // Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
                                // the key remainder must be exactly equal to the path remainder. We already
                                // did the necessary byte comparison, so it's more efficient here to check that
                                // the key remainder length equals the shared nibble length, which implies
                                // equality with the path remainder (since we already did the same check with
                                // the path remainder and the shared nibble length).
                                require(
                                    keyRemainder.length == sharedNibbleLength,
                                    "MerkleTrie: key remainder must be identical to path remainder"
                                );
                                // Our Merkle Trie is designed specifically for the purposes of the Ethereum
                                // state trie. Empty values are not allowed in the state trie, so we can safely
                                // say that if the value is empty, the key should not exist and the proof is
                                // invalid.
                                value_ = RLPReader.readBytes(currentNode.decoded[1]);
                                require(value_.length > 0, "MerkleTrie: value length must be greater than zero (leaf)");
                                // Extra proof elements are not allowed.
                                require(i == proof.length - 1, "MerkleTrie: value node must be last node in proof (leaf)");
                                return value_;
                            } else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
                                // Prefix of 0 or 1 means this is an extension node. We move onto the next node
                                // in the proof and increment the key index by the length of the path remainder
                                // which is equal to the shared nibble length.
                                currentNodeID = _getNodeID(currentNode.decoded[1]);
                                currentKeyIndex += sharedNibbleLength;
                            } else {
                                revert("MerkleTrie: received a node with an unknown prefix");
                            }
                        } else {
                            revert("MerkleTrie: received an unparseable node");
                        }
                    }
                    revert("MerkleTrie: ran out of proof elements");
                }
                /// @notice Parses an array of proof elements into a new array that contains both the original
                ///         encoded element and the RLP-decoded element.
                /// @param _proof Array of proof elements to parse.
                /// @return proof_ Proof parsed into easily accessible structs.
                function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory proof_) {
                    uint256 length = _proof.length;
                    proof_ = new TrieNode[](length);
                    for (uint256 i = 0; i < length;) {
                        proof_[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
                        unchecked {
                            ++i;
                        }
                    }
                }
                /// @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
                ///         specification, but nodes < 32 bytes are not actually hashed.
                /// @param _node Node to pull an ID for.
                /// @return id_ ID for the node, depending on the size of its contents.
                function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory id_) {
                    id_ = _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
                }
                /// @notice Gets the path for a leaf or extension node.
                /// @param _node Node to get a path for.
                /// @return nibbles_ Node path, converted to an array of nibbles.
                function _getNodePath(TrieNode memory _node) private pure returns (bytes memory nibbles_) {
                    nibbles_ = Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
                }
                /// @notice Utility; determines the number of nibbles shared between two nibble arrays.
                /// @param _a First nibble array.
                /// @param _b Second nibble array.
                /// @return shared_ Number of shared nibbles.
                function _getSharedNibbleLength(bytes memory _a, bytes memory _b) private pure returns (uint256 shared_) {
                    uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
                    for (; shared_ < max && _a[shared_] == _b[shared_];) {
                        unchecked {
                            ++shared_;
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
             * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
             *
             * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
             * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
             * need to send a transaction, and thus is not required to hold Ether at all.
             */
            interface IERC20Permit {
                /**
                 * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
                 * given ``owner``'s signed approval.
                 *
                 * IMPORTANT: The same issues {IERC20-approve} has related to transaction
                 * ordering also apply here.
                 *
                 * Emits an {Approval} event.
                 *
                 * Requirements:
                 *
                 * - `spender` cannot be the zero address.
                 * - `deadline` must be a timestamp in the future.
                 * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
                 * over the EIP712-formatted function arguments.
                 * - the signature must use ``owner``'s current nonce (see {nonces}).
                 *
                 * For more information on the signature format, see the
                 * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
                 * section].
                 */
                function permit(
                    address owner,
                    address spender,
                    uint256 value,
                    uint256 deadline,
                    uint8 v,
                    bytes32 r,
                    bytes32 s
                ) external;
                /**
                 * @dev Returns the current nonce for `owner`. This value must be
                 * included whenever a signature is generated for {permit}.
                 *
                 * Every successful call to {permit} increases ``owner``'s nonce by one. This
                 * prevents a signature from being used multiple times.
                 */
                function nonces(address owner) external view returns (uint256);
                /**
                 * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
                 */
                // solhint-disable-next-line func-name-mixedcase
                function DOMAIN_SEPARATOR() external view returns (bytes32);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @notice Error returns when a non-depositor account tries to set L1 block values.
            error NotDepositor();
            /// @notice Error when a chain ID is not in the interop dependency set.
            error NotDependency();
            /// @notice Error when the interop dependency set size is too large.
            error DependencySetSizeTooLarge();
            /// @notice Error when a chain ID already in the interop dependency set is attempted to be added.
            error AlreadyDependency();
            /// @notice Error when the chain's chain ID is attempted to be removed from the interop dependency set.
            error CantRemovedDependency();
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            import "../proxy/utils/Initializable.sol";
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract ContextUpgradeable is Initializable {
                function __Context_init() internal onlyInitializing {
                }
                function __Context_init_unchained() internal onlyInitializing {
                }
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
                /**
                 * @dev This empty reserved space is put in place to allow future versions to add new
                 * variables without shifting down storage in the inheritance chain.
                 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
                 */
                uint256[50] private __gap;
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/AddressUpgradeable.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.4;
            /// @notice Library for converting numbers into strings and other string operations.
            /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
            /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
            ///
            /// Note:
            /// For performance and bytecode compactness, most of the string operations are restricted to
            /// byte strings (7-bit ASCII), except where otherwise specified.
            /// Usage of byte string operations on charsets with runes spanning two or more bytes
            /// can lead to undefined behavior.
            library LibString {
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                        CUSTOM ERRORS                       */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev The length of the output is too small to contain all the hex digits.
                error HexLengthInsufficient();
                /// @dev The length of the string is more than 32 bytes.
                error TooBigForSmallString();
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                         CONSTANTS                          */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev The constant returned when the `search` is not found in the string.
                uint256 internal constant NOT_FOUND = type(uint256).max;
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                     DECIMAL OPERATIONS                     */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Returns the base 10 decimal representation of `value`.
                function toString(uint256 value) internal pure returns (string memory str) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
                        // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
                        // We will need 1 word for the trailing zeros padding, 1 word for the length,
                        // and 3 words for a maximum of 78 digits.
                        str := add(mload(0x40), 0x80)
                        // Update the free memory pointer to allocate.
                        mstore(0x40, add(str, 0x20))
                        // Zeroize the slot after the string.
                        mstore(str, 0)
                        // Cache the end of the memory to calculate the length later.
                        let end := str
                        let w := not(0) // Tsk.
                        // We write the string from rightmost digit to leftmost digit.
                        // The following is essentially a do-while loop that also handles the zero case.
                        for { let temp := value } 1 {} {
                            str := add(str, w) // `sub(str, 1)`.
                            // Write the character to the pointer.
                            // The ASCII index of the '0' character is 48.
                            mstore8(str, add(48, mod(temp, 10)))
                            // Keep dividing `temp` until zero.
                            temp := div(temp, 10)
                            if iszero(temp) { break }
                        }
                        let length := sub(end, str)
                        // Move the pointer 32 bytes leftwards to make room for the length.
                        str := sub(str, 0x20)
                        // Store the length.
                        mstore(str, length)
                    }
                }
                /// @dev Returns the base 10 decimal representation of `value`.
                function toString(int256 value) internal pure returns (string memory str) {
                    if (value >= 0) {
                        return toString(uint256(value));
                    }
                    unchecked {
                        str = toString(uint256(-value));
                    }
                    /// @solidity memory-safe-assembly
                    assembly {
                        // We still have some spare memory space on the left,
                        // as we have allocated 3 words (96 bytes) for up to 78 digits.
                        let length := mload(str) // Load the string length.
                        mstore(str, 0x2d) // Store the '-' character.
                        str := sub(str, 1) // Move back the string pointer by a byte.
                        mstore(str, add(length, 1)) // Update the string length.
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                   HEXADECIMAL OPERATIONS                   */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Returns the hexadecimal representation of `value`,
                /// left-padded to an input length of `length` bytes.
                /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                /// giving a total length of `length * 2 + 2` bytes.
                /// Reverts if `length` is too small for the output to contain all the digits.
                function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(value, length);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let strLength := add(mload(str), 2) // Compute the length.
                        mstore(str, 0x3078) // Write the "0x" prefix.
                        str := sub(str, 2) // Move the pointer.
                        mstore(str, strLength) // Write the length.
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`,
                /// left-padded to an input length of `length` bytes.
                /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
                /// giving a total length of `length * 2` bytes.
                /// Reverts if `length` is too small for the output to contain all the digits.
                function toHexStringNoPrefix(uint256 value, uint256 length)
                    internal
                    pure
                    returns (string memory str)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
                        // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
                        // We add 0x20 to the total and round down to a multiple of 0x20.
                        // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
                        str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
                        // Allocate the memory.
                        mstore(0x40, add(str, 0x20))
                        // Zeroize the slot after the string.
                        mstore(str, 0)
                        // Cache the end to calculate the length later.
                        let end := str
                        // Store "0123456789abcdef" in scratch space.
                        mstore(0x0f, 0x30313233343536373839616263646566)
                        let start := sub(str, add(length, length))
                        let w := not(1) // Tsk.
                        let temp := value
                        // We write the string from rightmost digit to leftmost digit.
                        // The following is essentially a do-while loop that also handles the zero case.
                        for {} 1 {} {
                            str := add(str, w) // `sub(str, 2)`.
                            mstore8(add(str, 1), mload(and(temp, 15)))
                            mstore8(str, mload(and(shr(4, temp), 15)))
                            temp := shr(8, temp)
                            if iszero(xor(str, start)) { break }
                        }
                        if temp {
                            mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                            revert(0x1c, 0x04)
                        }
                        // Compute the string's length.
                        let strLength := sub(end, str)
                        // Move the pointer and write the length.
                        str := sub(str, 0x20)
                        mstore(str, strLength)
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                /// As address are 20 bytes long, the output will left-padded to have
                /// a length of `20 * 2 + 2` bytes.
                function toHexString(uint256 value) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(value);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let strLength := add(mload(str), 2) // Compute the length.
                        mstore(str, 0x3078) // Write the "0x" prefix.
                        str := sub(str, 2) // Move the pointer.
                        mstore(str, strLength) // Write the length.
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is prefixed with "0x".
                /// The output excludes leading "0" from the `toHexString` output.
                /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
                function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(value);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                        let strLength := add(mload(str), 2) // Compute the length.
                        mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
                        str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
                        mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
                /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
                function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(value);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
                        let strLength := mload(str) // Get the length.
                        str := add(str, o) // Move the pointer, accounting for leading zero.
                        mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is encoded using 2 hexadecimal digits per byte.
                /// As address are 20 bytes long, the output will left-padded to have
                /// a length of `20 * 2` bytes.
                function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                        // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
                        // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
                        str := add(mload(0x40), 0x80)
                        // Allocate the memory.
                        mstore(0x40, add(str, 0x20))
                        // Zeroize the slot after the string.
                        mstore(str, 0)
                        // Cache the end to calculate the length later.
                        let end := str
                        // Store "0123456789abcdef" in scratch space.
                        mstore(0x0f, 0x30313233343536373839616263646566)
                        let w := not(1) // Tsk.
                        // We write the string from rightmost digit to leftmost digit.
                        // The following is essentially a do-while loop that also handles the zero case.
                        for { let temp := value } 1 {} {
                            str := add(str, w) // `sub(str, 2)`.
                            mstore8(add(str, 1), mload(and(temp, 15)))
                            mstore8(str, mload(and(shr(4, temp), 15)))
                            temp := shr(8, temp)
                            if iszero(temp) { break }
                        }
                        // Compute the string's length.
                        let strLength := sub(end, str)
                        // Move the pointer and write the length.
                        str := sub(str, 0x20)
                        mstore(str, strLength)
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
                /// and the alphabets are capitalized conditionally according to
                /// https://eips.ethereum.org/EIPS/eip-55
                function toHexStringChecksummed(address value) internal pure returns (string memory str) {
                    str = toHexString(value);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
                        let o := add(str, 0x22)
                        let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
                        let t := shl(240, 136) // `0b10001000 << 240`
                        for { let i := 0 } 1 {} {
                            mstore(add(i, i), mul(t, byte(i, hashed)))
                            i := add(i, 1)
                            if eq(i, 20) { break }
                        }
                        mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
                        o := add(o, 0x20)
                        mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
                function toHexString(address value) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(value);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let strLength := add(mload(str), 2) // Compute the length.
                        mstore(str, 0x3078) // Write the "0x" prefix.
                        str := sub(str, 2) // Move the pointer.
                        mstore(str, strLength) // Write the length.
                    }
                }
                /// @dev Returns the hexadecimal representation of `value`.
                /// The output is encoded using 2 hexadecimal digits per byte.
                function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        str := mload(0x40)
                        // Allocate the memory.
                        // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
                        // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
                        // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
                        mstore(0x40, add(str, 0x80))
                        // Store "0123456789abcdef" in scratch space.
                        mstore(0x0f, 0x30313233343536373839616263646566)
                        str := add(str, 2)
                        mstore(str, 40)
                        let o := add(str, 0x20)
                        mstore(add(o, 40), 0)
                        value := shl(96, value)
                        // We write the string from rightmost digit to leftmost digit.
                        // The following is essentially a do-while loop that also handles the zero case.
                        for { let i := 0 } 1 {} {
                            let p := add(o, add(i, i))
                            let temp := byte(i, value)
                            mstore8(add(p, 1), mload(and(temp, 15)))
                            mstore8(p, mload(shr(4, temp)))
                            i := add(i, 1)
                            if eq(i, 20) { break }
                        }
                    }
                }
                /// @dev Returns the hex encoded string from the raw bytes.
                /// The output is encoded using 2 hexadecimal digits per byte.
                function toHexString(bytes memory raw) internal pure returns (string memory str) {
                    str = toHexStringNoPrefix(raw);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let strLength := add(mload(str), 2) // Compute the length.
                        mstore(str, 0x3078) // Write the "0x" prefix.
                        str := sub(str, 2) // Move the pointer.
                        mstore(str, strLength) // Write the length.
                    }
                }
                /// @dev Returns the hex encoded string from the raw bytes.
                /// The output is encoded using 2 hexadecimal digits per byte.
                function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let length := mload(raw)
                        str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
                        mstore(str, add(length, length)) // Store the length of the output.
                        // Store "0123456789abcdef" in scratch space.
                        mstore(0x0f, 0x30313233343536373839616263646566)
                        let o := add(str, 0x20)
                        let end := add(raw, length)
                        for {} iszero(eq(raw, end)) {} {
                            raw := add(raw, 1)
                            mstore8(add(o, 1), mload(and(mload(raw), 15)))
                            mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                            o := add(o, 2)
                        }
                        mstore(o, 0) // Zeroize the slot after the string.
                        mstore(0x40, add(o, 0x20)) // Allocate the memory.
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                   RUNE STRING OPERATIONS                   */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                /// @dev Returns the number of UTF characters in the string.
                function runeCount(string memory s) internal pure returns (uint256 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        if mload(s) {
                            mstore(0x00, div(not(0), 255))
                            mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                            let o := add(s, 0x20)
                            let end := add(o, mload(s))
                            for { result := 1 } 1 { result := add(result, 1) } {
                                o := add(o, byte(0, mload(shr(250, mload(o)))))
                                if iszero(lt(o, end)) { break }
                            }
                        }
                    }
                }
                /// @dev Returns if this string is a 7-bit ASCII string.
                /// (i.e. all characters codes are in [0..127])
                function is7BitASCII(string memory s) internal pure returns (bool result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let mask := shl(7, div(not(0), 255))
                        result := 1
                        let n := mload(s)
                        if n {
                            let o := add(s, 0x20)
                            let end := add(o, n)
                            let last := mload(end)
                            mstore(end, 0)
                            for {} 1 {} {
                                if and(mask, mload(o)) {
                                    result := 0
                                    break
                                }
                                o := add(o, 0x20)
                                if iszero(lt(o, end)) { break }
                            }
                            mstore(end, last)
                        }
                    }
                }
                /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
                /*                   BYTE STRING OPERATIONS                   */
                /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
                // For performance and bytecode compactness, byte string operations are restricted
                // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
                // Usage of byte string operations on charsets with runes spanning two or more bytes
                // can lead to undefined behavior.
                /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
                function replace(string memory subject, string memory search, string memory replacement)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let subjectLength := mload(subject)
                        let searchLength := mload(search)
                        let replacementLength := mload(replacement)
                        subject := add(subject, 0x20)
                        search := add(search, 0x20)
                        replacement := add(replacement, 0x20)
                        result := add(mload(0x40), 0x20)
                        let subjectEnd := add(subject, subjectLength)
                        if iszero(gt(searchLength, subjectLength)) {
                            let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                            let h := 0
                            if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                            let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                            let s := mload(search)
                            for {} 1 {} {
                                let t := mload(subject)
                                // Whether the first `searchLength % 32` bytes of
                                // `subject` and `search` matches.
                                if iszero(shr(m, xor(t, s))) {
                                    if h {
                                        if iszero(eq(keccak256(subject, searchLength), h)) {
                                            mstore(result, t)
                                            result := add(result, 1)
                                            subject := add(subject, 1)
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    // Copy the `replacement` one word at a time.
                                    for { let o := 0 } 1 {} {
                                        mstore(add(result, o), mload(add(replacement, o)))
                                        o := add(o, 0x20)
                                        if iszero(lt(o, replacementLength)) { break }
                                    }
                                    result := add(result, replacementLength)
                                    subject := add(subject, searchLength)
                                    if searchLength {
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                            }
                        }
                        let resultRemainder := result
                        result := add(mload(0x40), 0x20)
                        let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
                        // Copy the rest of the string one word at a time.
                        for {} lt(subject, subjectEnd) {} {
                            mstore(resultRemainder, mload(subject))
                            resultRemainder := add(resultRemainder, 0x20)
                            subject := add(subject, 0x20)
                        }
                        result := sub(result, 0x20)
                        let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
                        mstore(last, 0)
                        mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        mstore(result, k) // Store the length.
                    }
                }
                /// @dev Returns the byte index of the first location of `search` in `subject`,
                /// searching from left to right, starting from `from`.
                /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                function indexOf(string memory subject, string memory search, uint256 from)
                    internal
                    pure
                    returns (uint256 result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        for { let subjectLength := mload(subject) } 1 {} {
                            if iszero(mload(search)) {
                                if iszero(gt(from, subjectLength)) {
                                    result := from
                                    break
                                }
                                result := subjectLength
                                break
                            }
                            let searchLength := mload(search)
                            let subjectStart := add(subject, 0x20)
                            result := not(0) // Initialize to `NOT_FOUND`.
                            subject := add(subjectStart, from)
                            let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
                            let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                            let s := mload(add(search, 0x20))
                            if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
                            if iszero(lt(searchLength, 0x20)) {
                                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                    if iszero(shr(m, xor(mload(subject), s))) {
                                        if eq(keccak256(subject, searchLength), h) {
                                            result := sub(subject, subjectStart)
                                            break
                                        }
                                    }
                                    subject := add(subject, 1)
                                    if iszero(lt(subject, end)) { break }
                                }
                                break
                            }
                            for {} 1 {} {
                                if iszero(shr(m, xor(mload(subject), s))) {
                                    result := sub(subject, subjectStart)
                                    break
                                }
                                subject := add(subject, 1)
                                if iszero(lt(subject, end)) { break }
                            }
                            break
                        }
                    }
                }
                /// @dev Returns the byte index of the first location of `search` in `subject`,
                /// searching from left to right.
                /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                function indexOf(string memory subject, string memory search)
                    internal
                    pure
                    returns (uint256 result)
                {
                    result = indexOf(subject, search, 0);
                }
                /// @dev Returns the byte index of the first location of `search` in `subject`,
                /// searching from right to left, starting from `from`.
                /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                function lastIndexOf(string memory subject, string memory search, uint256 from)
                    internal
                    pure
                    returns (uint256 result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        for {} 1 {} {
                            result := not(0) // Initialize to `NOT_FOUND`.
                            let searchLength := mload(search)
                            if gt(searchLength, mload(subject)) { break }
                            let w := result
                            let fromMax := sub(mload(subject), searchLength)
                            if iszero(gt(fromMax, from)) { from := fromMax }
                            let end := add(add(subject, 0x20), w)
                            subject := add(add(subject, 0x20), from)
                            if iszero(gt(subject, end)) { break }
                            // As this function is not too often used,
                            // we shall simply use keccak256 for smaller bytecode size.
                            for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                                if eq(keccak256(subject, searchLength), h) {
                                    result := sub(subject, add(end, 1))
                                    break
                                }
                                subject := add(subject, w) // `sub(subject, 1)`.
                                if iszero(gt(subject, end)) { break }
                            }
                            break
                        }
                    }
                }
                /// @dev Returns the byte index of the first location of `search` in `subject`,
                /// searching from right to left.
                /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
                function lastIndexOf(string memory subject, string memory search)
                    internal
                    pure
                    returns (uint256 result)
                {
                    result = lastIndexOf(subject, search, uint256(int256(-1)));
                }
                /// @dev Returns true if `search` is found in `subject`, false otherwise.
                function contains(string memory subject, string memory search) internal pure returns (bool) {
                    return indexOf(subject, search) != NOT_FOUND;
                }
                /// @dev Returns whether `subject` starts with `search`.
                function startsWith(string memory subject, string memory search)
                    internal
                    pure
                    returns (bool result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let searchLength := mload(search)
                        // Just using keccak256 directly is actually cheaper.
                        // forgefmt: disable-next-item
                        result := and(
                            iszero(gt(searchLength, mload(subject))),
                            eq(
                                keccak256(add(subject, 0x20), searchLength),
                                keccak256(add(search, 0x20), searchLength)
                            )
                        )
                    }
                }
                /// @dev Returns whether `subject` ends with `search`.
                function endsWith(string memory subject, string memory search)
                    internal
                    pure
                    returns (bool result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let searchLength := mload(search)
                        let subjectLength := mload(subject)
                        // Whether `search` is not longer than `subject`.
                        let withinRange := iszero(gt(searchLength, subjectLength))
                        // Just using keccak256 directly is actually cheaper.
                        // forgefmt: disable-next-item
                        result := and(
                            withinRange,
                            eq(
                                keccak256(
                                    // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                                    add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                                    searchLength
                                ),
                                keccak256(add(search, 0x20), searchLength)
                            )
                        )
                    }
                }
                /// @dev Returns `subject` repeated `times`.
                function repeat(string memory subject, uint256 times)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let subjectLength := mload(subject)
                        if iszero(or(iszero(times), iszero(subjectLength))) {
                            subject := add(subject, 0x20)
                            result := mload(0x40)
                            let output := add(result, 0x20)
                            for {} 1 {} {
                                // Copy the `subject` one word at a time.
                                for { let o := 0 } 1 {} {
                                    mstore(add(output, o), mload(add(subject, o)))
                                    o := add(o, 0x20)
                                    if iszero(lt(o, subjectLength)) { break }
                                }
                                output := add(output, subjectLength)
                                times := sub(times, 1)
                                if iszero(times) { break }
                            }
                            mstore(output, 0) // Zeroize the slot after the string.
                            let resultLength := sub(output, add(result, 0x20))
                            mstore(result, resultLength) // Store the length.
                            // Allocate the memory.
                            mstore(0x40, add(result, add(resultLength, 0x20)))
                        }
                    }
                }
                /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
                /// `start` and `end` are byte offsets.
                function slice(string memory subject, uint256 start, uint256 end)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let subjectLength := mload(subject)
                        if iszero(gt(subjectLength, end)) { end := subjectLength }
                        if iszero(gt(subjectLength, start)) { start := subjectLength }
                        if lt(start, end) {
                            result := mload(0x40)
                            let resultLength := sub(end, start)
                            mstore(result, resultLength)
                            subject := add(subject, start)
                            let w := not(0x1f)
                            // Copy the `subject` one word at a time, backwards.
                            for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                                mstore(add(result, o), mload(add(subject, o)))
                                o := add(o, w) // `sub(o, 0x20)`.
                                if iszero(o) { break }
                            }
                            // Zeroize the slot after the string.
                            mstore(add(add(result, 0x20), resultLength), 0)
                            // Allocate memory for the length and the bytes,
                            // rounded up to a multiple of 32.
                            mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
                        }
                    }
                }
                /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
                /// `start` is a byte offset.
                function slice(string memory subject, uint256 start)
                    internal
                    pure
                    returns (string memory result)
                {
                    result = slice(subject, start, uint256(int256(-1)));
                }
                /// @dev Returns all the indices of `search` in `subject`.
                /// The indices are byte offsets.
                function indicesOf(string memory subject, string memory search)
                    internal
                    pure
                    returns (uint256[] memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let subjectLength := mload(subject)
                        let searchLength := mload(search)
                        if iszero(gt(searchLength, subjectLength)) {
                            subject := add(subject, 0x20)
                            search := add(search, 0x20)
                            result := add(mload(0x40), 0x20)
                            let subjectStart := subject
                            let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                            let h := 0
                            if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                            let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                            let s := mload(search)
                            for {} 1 {} {
                                let t := mload(subject)
                                // Whether the first `searchLength % 32` bytes of
                                // `subject` and `search` matches.
                                if iszero(shr(m, xor(t, s))) {
                                    if h {
                                        if iszero(eq(keccak256(subject, searchLength), h)) {
                                            subject := add(subject, 1)
                                            if iszero(lt(subject, subjectSearchEnd)) { break }
                                            continue
                                        }
                                    }
                                    // Append to `result`.
                                    mstore(result, sub(subject, subjectStart))
                                    result := add(result, 0x20)
                                    // Advance `subject` by `searchLength`.
                                    subject := add(subject, searchLength)
                                    if searchLength {
                                        if iszero(lt(subject, subjectSearchEnd)) { break }
                                        continue
                                    }
                                }
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                            }
                            let resultEnd := result
                            // Assign `result` to the free memory pointer.
                            result := mload(0x40)
                            // Store the length of `result`.
                            mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                            // Allocate memory for result.
                            // We allocate one more word, so this array can be recycled for {split}.
                            mstore(0x40, add(resultEnd, 0x20))
                        }
                    }
                }
                /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
                function split(string memory subject, string memory delimiter)
                    internal
                    pure
                    returns (string[] memory result)
                {
                    uint256[] memory indices = indicesOf(subject, delimiter);
                    /// @solidity memory-safe-assembly
                    assembly {
                        let w := not(0x1f)
                        let indexPtr := add(indices, 0x20)
                        let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
                        mstore(add(indicesEnd, w), mload(subject))
                        mstore(indices, add(mload(indices), 1))
                        let prevIndex := 0
                        for {} 1 {} {
                            let index := mload(indexPtr)
                            mstore(indexPtr, 0x60)
                            if iszero(eq(index, prevIndex)) {
                                let element := mload(0x40)
                                let elementLength := sub(index, prevIndex)
                                mstore(element, elementLength)
                                // Copy the `subject` one word at a time, backwards.
                                for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                                    mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                                    o := add(o, w) // `sub(o, 0x20)`.
                                    if iszero(o) { break }
                                }
                                // Zeroize the slot after the string.
                                mstore(add(add(element, 0x20), elementLength), 0)
                                // Allocate memory for the length and the bytes,
                                // rounded up to a multiple of 32.
                                mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                                // Store the `element` into the array.
                                mstore(indexPtr, element)
                            }
                            prevIndex := add(index, mload(delimiter))
                            indexPtr := add(indexPtr, 0x20)
                            if iszero(lt(indexPtr, indicesEnd)) { break }
                        }
                        result := indices
                        if iszero(mload(delimiter)) {
                            result := add(indices, 0x20)
                            mstore(result, sub(mload(indices), 2))
                        }
                    }
                }
                /// @dev Returns a concatenated string of `a` and `b`.
                /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
                function concat(string memory a, string memory b)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let w := not(0x1f)
                        result := mload(0x40)
                        let aLength := mload(a)
                        // Copy `a` one word at a time, backwards.
                        for { let o := and(add(aLength, 0x20), w) } 1 {} {
                            mstore(add(result, o), mload(add(a, o)))
                            o := add(o, w) // `sub(o, 0x20)`.
                            if iszero(o) { break }
                        }
                        let bLength := mload(b)
                        let output := add(result, aLength)
                        // Copy `b` one word at a time, backwards.
                        for { let o := and(add(bLength, 0x20), w) } 1 {} {
                            mstore(add(output, o), mload(add(b, o)))
                            o := add(o, w) // `sub(o, 0x20)`.
                            if iszero(o) { break }
                        }
                        let totalLength := add(aLength, bLength)
                        let last := add(add(result, 0x20), totalLength)
                        // Zeroize the slot after the string.
                        mstore(last, 0)
                        // Stores the length.
                        mstore(result, totalLength)
                        // Allocate memory for the length and the bytes,
                        // rounded up to a multiple of 32.
                        mstore(0x40, and(add(last, 0x1f), w))
                    }
                }
                /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
                /// WARNING! This function is only compatible with 7-bit ASCII strings.
                function toCase(string memory subject, bool toUpper)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let length := mload(subject)
                        if length {
                            result := add(mload(0x40), 0x20)
                            subject := add(subject, 1)
                            let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                            let w := not(0)
                            for { let o := length } 1 {} {
                                o := add(o, w)
                                let b := and(0xff, mload(add(subject, o)))
                                mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                                if iszero(o) { break }
                            }
                            result := mload(0x40)
                            mstore(result, length) // Store the length.
                            let last := add(add(result, 0x20), length)
                            mstore(last, 0) // Zeroize the slot after the string.
                            mstore(0x40, add(last, 0x20)) // Allocate the memory.
                        }
                    }
                }
                /// @dev Returns a string from a small bytes32 string.
                /// `s` must be null-terminated, or behavior will be undefined.
                function fromSmallString(bytes32 s) internal pure returns (string memory result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := mload(0x40)
                        let n := 0
                        for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\\0'.
                        mstore(result, n)
                        let o := add(result, 0x20)
                        mstore(o, s)
                        mstore(add(o, n), 0)
                        mstore(0x40, add(result, 0x40))
                    }
                }
                /// @dev Returns the small string, with all bytes after the first null byte zeroized.
                function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\\0'.
                        mstore(0x00, s)
                        mstore(result, 0x00)
                        result := mload(0x00)
                    }
                }
                /// @dev Returns the string as a normalized null-terminated small string.
                function toSmallString(string memory s) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := mload(s)
                        if iszero(lt(result, 33)) {
                            mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                            revert(0x1c, 0x04)
                        }
                        result := shl(shl(3, sub(32, result)), mload(add(s, result)))
                    }
                }
                /// @dev Returns a lowercased copy of the string.
                /// WARNING! This function is only compatible with 7-bit ASCII strings.
                function lower(string memory subject) internal pure returns (string memory result) {
                    result = toCase(subject, false);
                }
                /// @dev Returns an UPPERCASED copy of the string.
                /// WARNING! This function is only compatible with 7-bit ASCII strings.
                function upper(string memory subject) internal pure returns (string memory result) {
                    result = toCase(subject, true);
                }
                /// @dev Escapes the string to be used within HTML tags.
                function escapeHTML(string memory s) internal pure returns (string memory result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let end := add(s, mload(s))
                        result := add(mload(0x40), 0x20)
                        // Store the bytes of the packed offsets and strides into the scratch space.
                        // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                        mstore(0x1f, 0x900094)
                        mstore(0x08, 0xc0000000a6ab)
                        // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                        mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
                        for {} iszero(eq(s, end)) {} {
                            s := add(s, 1)
                            let c := and(mload(s), 0xff)
                            // Not in `["\\"","'","&","<",">"]`.
                            if iszero(and(shl(c, 1), 0x500000c400000000)) {
                                mstore8(result, c)
                                result := add(result, 1)
                                continue
                            }
                            let t := shr(248, mload(c))
                            mstore(result, mload(and(t, 0x1f)))
                            result := add(result, shr(5, t))
                        }
                        let last := result
                        mstore(last, 0) // Zeroize the slot after the string.
                        result := mload(0x40)
                        mstore(result, sub(last, add(result, 0x20))) // Store the length.
                        mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    }
                }
                /// @dev Escapes the string to be used within double-quotes in a JSON.
                /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
                function escapeJSON(string memory s, bool addDoubleQuotes)
                    internal
                    pure
                    returns (string memory result)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let end := add(s, mload(s))
                        result := add(mload(0x40), 0x20)
                        if addDoubleQuotes {
                            mstore8(result, 34)
                            result := add(1, result)
                        }
                        // Store "\\\\u0000" in scratch space.
                        // Store "0123456789abcdef" in scratch space.
                        // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                        // into the scratch space.
                        mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                        // Bitmask for detecting `["\\"","\\\\"]`.
                        let e := or(shl(0x22, 1), shl(0x5c, 1))
                        for {} iszero(eq(s, end)) {} {
                            s := add(s, 1)
                            let c := and(mload(s), 0xff)
                            if iszero(lt(c, 0x20)) {
                                if iszero(and(shl(c, 1), e)) {
                                    // Not in `["\\"","\\\\"]`.
                                    mstore8(result, c)
                                    result := add(result, 1)
                                    continue
                                }
                                mstore8(result, 0x5c) // "\\\\".
                                mstore8(add(result, 1), c)
                                result := add(result, 2)
                                continue
                            }
                            if iszero(and(shl(c, 1), 0x3700)) {
                                // Not in `["\\b","\\t","\
            ","\\f","\\d"]`.
                                mstore8(0x1d, mload(shr(4, c))) // Hex value.
                                mstore8(0x1e, mload(and(c, 15))) // Hex value.
                                mstore(result, mload(0x19)) // "\\\\u00XX".
                                result := add(result, 6)
                                continue
                            }
                            mstore8(result, 0x5c) // "\\\\".
                            mstore8(add(result, 1), mload(add(c, 8)))
                            result := add(result, 2)
                        }
                        if addDoubleQuotes {
                            mstore8(result, 34)
                            result := add(1, result)
                        }
                        let last := result
                        mstore(last, 0) // Zeroize the slot after the string.
                        result := mload(0x40)
                        mstore(result, sub(last, add(result, 0x20))) // Store the length.
                        mstore(0x40, add(last, 0x20)) // Allocate the memory.
                    }
                }
                /// @dev Escapes the string to be used within double-quotes in a JSON.
                function escapeJSON(string memory s) internal pure returns (string memory result) {
                    result = escapeJSON(s, false);
                }
                /// @dev Returns whether `a` equals `b`.
                function eq(string memory a, string memory b) internal pure returns (bool result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
                    }
                }
                /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
                function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // These should be evaluated on compile time, as far as possible.
                        let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
                        let x := not(or(m, or(b, add(m, and(b, m)))))
                        let r := shl(7, iszero(iszero(shr(128, x))))
                        r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        // forgefmt: disable-next-item
                        result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                            xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
                    }
                }
                /// @dev Packs a single string with its length into a single word.
                /// Returns `bytes32(0)` if the length is zero or greater than 31.
                function packOne(string memory a) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // We don't need to zero right pad the string,
                        // since this is our own custom non-standard packing scheme.
                        result :=
                            mul(
                                // Load the length and the bytes.
                                mload(add(a, 0x1f)),
                                // `length != 0 && length < 32`. Abuses underflow.
                                // Assumes that the length is valid and within the block gas limit.
                                lt(sub(mload(a), 1), 0x1f)
                            )
                    }
                }
                /// @dev Unpacks a string packed using {packOne}.
                /// Returns the empty string if `packed` is `bytes32(0)`.
                /// If `packed` is not an output of {packOne}, the output behavior is undefined.
                function unpackOne(bytes32 packed) internal pure returns (string memory result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Grab the free memory pointer.
                        result := mload(0x40)
                        // Allocate 2 words (1 for the length, 1 for the bytes).
                        mstore(0x40, add(result, 0x40))
                        // Zeroize the length slot.
                        mstore(result, 0)
                        // Store the length and bytes.
                        mstore(add(result, 0x1f), packed)
                        // Right pad with zeroes.
                        mstore(add(add(result, 0x20), mload(result)), 0)
                    }
                }
                /// @dev Packs two strings with their lengths into a single word.
                /// Returns `bytes32(0)` if combined length is zero or greater than 30.
                function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        let aLength := mload(a)
                        // We don't need to zero right pad the strings,
                        // since this is our own custom non-standard packing scheme.
                        result :=
                            mul(
                                // Load the length and the bytes of `a` and `b`.
                                or(
                                    shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                                    mload(sub(add(b, 0x1e), aLength))
                                ),
                                // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                                // Assumes that the lengths are valid and within the block gas limit.
                                lt(sub(add(aLength, mload(b)), 1), 0x1e)
                            )
                    }
                }
                /// @dev Unpacks strings packed using {packTwo}.
                /// Returns the empty strings if `packed` is `bytes32(0)`.
                /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
                function unpackTwo(bytes32 packed)
                    internal
                    pure
                    returns (string memory resultA, string memory resultB)
                {
                    /// @solidity memory-safe-assembly
                    assembly {
                        // Grab the free memory pointer.
                        resultA := mload(0x40)
                        resultB := add(resultA, 0x40)
                        // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
                        mstore(0x40, add(resultB, 0x40))
                        // Zeroize the length slots.
                        mstore(resultA, 0)
                        mstore(resultB, 0)
                        // Store the lengths and bytes.
                        mstore(add(resultA, 0x1f), packed)
                        mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
                        // Right pad with zeroes.
                        mstore(add(add(resultA, 0x20), mload(resultA)), 0)
                        mstore(add(add(resultB, 0x20), mload(resultB)), 0)
                    }
                }
                /// @dev Directly returns `a` without copying.
                function directReturn(string memory a) internal pure {
                    assembly {
                        // Assumes that the string does not start from the scratch space.
                        let retStart := sub(a, 0x20)
                        let retSize := add(mload(a), 0x40)
                        // Right pad with zeroes. Just in case the string is produced
                        // by a method that doesn't zero right pad.
                        mstore(add(retStart, retSize), 0)
                        // Store the return offset.
                        mstore(retStart, 0x20)
                        // End the transaction, returning the string.
                        return(retStart, retSize)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
            pragma solidity ^0.8.0;
            import "../IERC20.sol";
            /**
             * @dev Interface for the optional metadata functions from the ERC20 standard.
             *
             * _Available since v4.1._
             */
            interface IERC20Metadata is IERC20 {
                /**
                 * @dev Returns the name of the token.
                 */
                function name() external view returns (string memory);
                /**
                 * @dev Returns the symbol of the token.
                 */
                function symbol() external view returns (string memory);
                /**
                 * @dev Returns the decimals places of the token.
                 */
                function decimals() external view returns (uint8);
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Provides information about the current execution context, including the
             * sender of the transaction and its data. While these are generally available
             * via msg.sender and msg.data, they should not be accessed in such a direct
             * manner, since when dealing with meta-transactions the account sending and
             * paying for execution may not be the actual sender (as far as an application
             * is concerned).
             *
             * This contract is only required for intermediate, library-like contracts.
             */
            abstract contract Context {
                function _msgSender() internal view virtual returns (address) {
                    return msg.sender;
                }
                function _msgData() internal view virtual returns (bytes calldata) {
                    return msg.data;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
            /// @title RLPWriter
            /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
            ///         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
            ///         modifications to improve legibility.
            library RLPWriter {
                /// @notice RLP encodes a byte string.
                /// @param _in The byte string to encode.
                /// @return out_ The RLP encoded string in bytes.
                function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                    if (_in.length == 1 && uint8(_in[0]) < 128) {
                        out_ = _in;
                    } else {
                        out_ = abi.encodePacked(_writeLength(_in.length, 128), _in);
                    }
                }
                /// @notice RLP encodes a list of RLP encoded byte byte strings.
                /// @param _in The list of RLP encoded byte strings.
                /// @return list_ The RLP encoded list of items in bytes.
                function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) {
                    list_ = _flatten(_in);
                    list_ = abi.encodePacked(_writeLength(list_.length, 192), list_);
                }
                /// @notice RLP encodes a string.
                /// @param _in The string to encode.
                /// @return out_ The RLP encoded string in bytes.
                function writeString(string memory _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(bytes(_in));
                }
                /// @notice RLP encodes an address.
                /// @param _in The address to encode.
                /// @return out_ The RLP encoded address in bytes.
                function writeAddress(address _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(abi.encodePacked(_in));
                }
                /// @notice RLP encodes a uint.
                /// @param _in The uint256 to encode.
                /// @return out_ The RLP encoded uint256 in bytes.
                function writeUint(uint256 _in) internal pure returns (bytes memory out_) {
                    out_ = writeBytes(_toBinary(_in));
                }
                /// @notice RLP encodes a bool.
                /// @param _in The bool to encode.
                /// @return out_ The RLP encoded bool in bytes.
                function writeBool(bool _in) internal pure returns (bytes memory out_) {
                    out_ = new bytes(1);
                    out_[0] = (_in ? bytes1(0x01) : bytes1(0x80));
                }
                /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
                /// @param _len    The length of the string or the payload.
                /// @param _offset 128 if item is string, 192 if item is list.
                /// @return out_ RLP encoded bytes.
                function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) {
                    if (_len < 56) {
                        out_ = new bytes(1);
                        out_[0] = bytes1(uint8(_len) + uint8(_offset));
                    } else {
                        uint256 lenLen;
                        uint256 i = 1;
                        while (_len / i != 0) {
                            lenLen++;
                            i *= 256;
                        }
                        out_ = new bytes(lenLen + 1);
                        out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
                        for (i = 1; i <= lenLen; i++) {
                            out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256));
                        }
                    }
                }
                /// @notice Encode integer in big endian binary form with no leading zeroes.
                /// @param _x The integer to encode.
                /// @return out_ RLP encoded bytes.
                function _toBinary(uint256 _x) private pure returns (bytes memory out_) {
                    bytes memory b = abi.encodePacked(_x);
                    uint256 i = 0;
                    for (; i < 32; i++) {
                        if (b[i] != 0) {
                            break;
                        }
                    }
                    out_ = new bytes(32 - i);
                    for (uint256 j = 0; j < out_.length; j++) {
                        out_[j] = b[i++];
                    }
                }
                /// @custom:attribution https://github.com/Arachnid/solidity-stringutils
                /// @notice Copies a piece of memory to another location.
                /// @param _dest Destination location.
                /// @param _src  Source location.
                /// @param _len  Length of memory to copy.
                function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure {
                    uint256 dest = _dest;
                    uint256 src = _src;
                    uint256 len = _len;
                    for (; len >= 32; len -= 32) {
                        assembly {
                            mstore(dest, mload(src))
                        }
                        dest += 32;
                        src += 32;
                    }
                    uint256 mask;
                    unchecked {
                        mask = 256 ** (32 - len) - 1;
                    }
                    assembly {
                        let srcpart := and(mload(src), not(mask))
                        let destpart := and(mload(dest), mask)
                        mstore(dest, or(destpart, srcpart))
                    }
                }
                /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
                /// @notice Flattens a list of byte strings into one byte string.
                /// @param _list List of byte strings to flatten.
                /// @return out_ The flattened byte string.
                function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) {
                    if (_list.length == 0) {
                        return new bytes(0);
                    }
                    uint256 len;
                    uint256 i = 0;
                    for (; i < _list.length; i++) {
                        len += _list[i].length;
                    }
                    out_ = new bytes(len);
                    uint256 flattenedPtr;
                    assembly {
                        flattenedPtr := add(out_, 0x20)
                    }
                    for (i = 0; i < _list.length; i++) {
                        bytes memory item = _list[i];
                        uint256 listPtr;
                        assembly {
                            listPtr := add(item, 0x20)
                        }
                        _memcpy(flattenedPtr, listPtr, item.length);
                        flattenedPtr += _list[i].length;
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Bytes
            /// @notice Bytes is a library for manipulating byte arrays.
            library Bytes {
                /// @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
                /// @notice Slices a byte array with a given starting index and length. Returns a new byte array
                ///         as opposed to a pointer to the original array. Will throw if trying to slice more
                ///         bytes than exist in the array.
                /// @param _bytes Byte array to slice.
                /// @param _start Starting index of the slice.
                /// @param _length Length of the slice.
                /// @return Slice of the input byte array.
                function slice(bytes memory _bytes, uint256 _start, uint256 _length) internal pure returns (bytes memory) {
                    unchecked {
                        require(_length + 31 >= _length, "slice_overflow");
                        require(_start + _length >= _start, "slice_overflow");
                        require(_bytes.length >= _start + _length, "slice_outOfBounds");
                    }
                    bytes memory tempBytes;
                    assembly {
                        switch iszero(_length)
                        case 0 {
                            // Get a location of some free memory and store it in tempBytes as
                            // Solidity does for memory variables.
                            tempBytes := mload(0x40)
                            // The first word of the slice result is potentially a partial
                            // word read from the original array. To read it, we calculate
                            // the length of that partial word and start copying that many
                            // bytes into the array. The first word we copy will start with
                            // data we don't care about, but the last `lengthmod` bytes will
                            // land at the beginning of the contents of the new array. When
                            // we're done copying, we overwrite the full first word with
                            // the actual length of the slice.
                            let lengthmod := and(_length, 31)
                            // The multiplication in the next line is necessary
                            // because when slicing multiples of 32 bytes (lengthmod == 0)
                            // the following copy loop was copying the origin's length
                            // and then ending prematurely not copying everything it should.
                            let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                            let end := add(mc, _length)
                            for {
                                // The multiplication in the next line has the same exact purpose
                                // as the one above.
                                let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                            } lt(mc, end) {
                                mc := add(mc, 0x20)
                                cc := add(cc, 0x20)
                            } { mstore(mc, mload(cc)) }
                            mstore(tempBytes, _length)
                            //update free-memory pointer
                            //allocating the array padded to 32 bytes like the compiler does now
                            mstore(0x40, and(add(mc, 31), not(31)))
                        }
                        //if we want a zero-length slice let's just return a zero-length array
                        default {
                            tempBytes := mload(0x40)
                            //zero out the 32 bytes slice we are about to return
                            //we need to do it because Solidity does not garbage collect
                            mstore(tempBytes, 0)
                            mstore(0x40, add(tempBytes, 0x20))
                        }
                    }
                    return tempBytes;
                }
                /// @notice Slices a byte array with a given starting index up to the end of the original byte
                ///         array. Returns a new array rathern than a pointer to the original.
                /// @param _bytes Byte array to slice.
                /// @param _start Starting index of the slice.
                /// @return Slice of the input byte array.
                function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
                    if (_start >= _bytes.length) {
                        return bytes("");
                    }
                    return slice(_bytes, _start, _bytes.length - _start);
                }
                /// @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
                ///         Resulting nibble array will be exactly twice as long as the input byte array.
                /// @param _bytes Input byte array to convert.
                /// @return Resulting nibble array.
                function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
                    bytes memory _nibbles;
                    assembly {
                        // Grab a free memory offset for the new array
                        _nibbles := mload(0x40)
                        // Load the length of the passed bytes array from memory
                        let bytesLength := mload(_bytes)
                        // Calculate the length of the new nibble array
                        // This is the length of the input array times 2
                        let nibblesLength := shl(0x01, bytesLength)
                        // Update the free memory pointer to allocate memory for the new array.
                        // To do this, we add the length of the new array + 32 bytes for the array length
                        // rounded up to the nearest 32 byte boundary to the current free memory pointer.
                        mstore(0x40, add(_nibbles, and(not(0x1F), add(nibblesLength, 0x3F))))
                        // Store the length of the new array in memory
                        mstore(_nibbles, nibblesLength)
                        // Store the memory offset of the _bytes array's contents on the stack
                        let bytesStart := add(_bytes, 0x20)
                        // Store the memory offset of the nibbles array's contents on the stack
                        let nibblesStart := add(_nibbles, 0x20)
                        // Loop through each byte in the input array
                        for { let i := 0x00 } lt(i, bytesLength) { i := add(i, 0x01) } {
                            // Get the starting offset of the next 2 bytes in the nibbles array
                            let offset := add(nibblesStart, shl(0x01, i))
                            // Load the byte at the current index within the `_bytes` array
                            let b := byte(0x00, mload(add(bytesStart, i)))
                            // Pull out the first nibble and store it in the new array
                            mstore8(offset, shr(0x04, b))
                            // Pull out the second nibble and store it in the new array
                            mstore8(add(offset, 0x01), and(b, 0x0F))
                        }
                    }
                    return _nibbles;
                }
                /// @notice Compares two byte arrays by comparing their keccak256 hashes.
                /// @param _bytes First byte array to compare.
                /// @param _other Second byte array to compare.
                /// @return True if the two byte arrays are equal, false otherwise.
                function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
                    return keccak256(_bytes) == keccak256(_other);
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.8;
            import "./RLPErrors.sol";
            /// @custom:attribution https://github.com/hamdiallam/Solidity-RLP
            /// @title RLPReader
            /// @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
            ///         from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
            ///         various tweaks to improve readability.
            library RLPReader {
                /// @notice Custom pointer type to avoid confusion between pointers and uint256s.
                type MemoryPointer is uint256;
                /// @notice RLP item types.
                /// @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
                /// @custom:value LIST_ITEM Represents an RLP list item.
                enum RLPItemType {
                    DATA_ITEM,
                    LIST_ITEM
                }
                /// @notice Struct representing an RLP item.
                /// @custom:field length Length of the RLP item.
                /// @custom:field ptr    Pointer to the RLP item in memory.
                struct RLPItem {
                    uint256 length;
                    MemoryPointer ptr;
                }
                /// @notice Max list length that this library will accept.
                uint256 internal constant MAX_LIST_LENGTH = 32;
                /// @notice Converts bytes to a reference to memory position and length.
                /// @param _in Input bytes to convert.
                /// @return out_ Output memory reference.
                function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory out_) {
                    // Empty arrays are not RLP items.
                    if (_in.length == 0) revert EmptyItem();
                    MemoryPointer ptr;
                    assembly {
                        ptr := add(_in, 32)
                    }
                    out_ = RLPItem({ length: _in.length, ptr: ptr });
                }
                /// @notice Reads an RLP list value into a list of RLP items.
                /// @param _in RLP list value.
                /// @return out_ Decoded RLP list items.
                function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory out_) {
                    (uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
                    if (itemType != RLPItemType.LIST_ITEM) revert UnexpectedString();
                    if (listOffset + listLength != _in.length) revert InvalidDataRemainder();
                    // Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
                    // writing to the length. Since we can't know the number of RLP items without looping over
                    // the entire input, we'd have to loop twice to accurately size this array. It's easier to
                    // simply set a reasonable maximum list length and decrease the size before we finish.
                    out_ = new RLPItem[](MAX_LIST_LENGTH);
                    uint256 itemCount = 0;
                    uint256 offset = listOffset;
                    while (offset < _in.length) {
                        (uint256 itemOffset, uint256 itemLength,) = _decodeLength(
                            RLPItem({ length: _in.length - offset, ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset) })
                        );
                        // We don't need to check itemCount < out.length explicitly because Solidity already
                        // handles this check on our behalf, we'd just be wasting gas.
                        out_[itemCount] = RLPItem({
                            length: itemLength + itemOffset,
                            ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
                        });
                        itemCount += 1;
                        offset += itemOffset + itemLength;
                    }
                    // Decrease the array size to match the actual item count.
                    assembly {
                        mstore(out_, itemCount)
                    }
                }
                /// @notice Reads an RLP list value into a list of RLP items.
                /// @param _in RLP list value.
                /// @return out_ Decoded RLP list items.
                function readList(bytes memory _in) internal pure returns (RLPItem[] memory out_) {
                    out_ = readList(toRLPItem(_in));
                }
                /// @notice Reads an RLP bytes value into bytes.
                /// @param _in RLP bytes value.
                /// @return out_ Decoded bytes.
                function readBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                    (uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
                    if (itemType != RLPItemType.DATA_ITEM) revert UnexpectedList();
                    if (_in.length != itemOffset + itemLength) revert InvalidDataRemainder();
                    out_ = _copy(_in.ptr, itemOffset, itemLength);
                }
                /// @notice Reads an RLP bytes value into bytes.
                /// @param _in RLP bytes value.
                /// @return out_ Decoded bytes.
                function readBytes(bytes memory _in) internal pure returns (bytes memory out_) {
                    out_ = readBytes(toRLPItem(_in));
                }
                /// @notice Reads the raw bytes of an RLP item.
                /// @param _in RLP item to read.
                /// @return out_ Raw RLP bytes.
                function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory out_) {
                    out_ = _copy(_in.ptr, 0, _in.length);
                }
                /// @notice Decodes the length of an RLP item.
                /// @param _in RLP item to decode.
                /// @return offset_ Offset of the encoded data.
                /// @return length_ Length of the encoded data.
                /// @return type_ RLP item type (LIST_ITEM or DATA_ITEM).
                function _decodeLength(RLPItem memory _in)
                    private
                    pure
                    returns (uint256 offset_, uint256 length_, RLPItemType type_)
                {
                    // Short-circuit if there's nothing to decode, note that we perform this check when
                    // the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
                    // that function and create an RLP item directly. So we need to check this anyway.
                    if (_in.length == 0) revert EmptyItem();
                    MemoryPointer ptr = _in.ptr;
                    uint256 prefix;
                    assembly {
                        prefix := byte(0, mload(ptr))
                    }
                    if (prefix <= 0x7f) {
                        // Single byte.
                        return (0, 1, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xb7) {
                        // Short string.
                        // slither-disable-next-line variable-scope
                        uint256 strLen = prefix - 0x80;
                        if (_in.length <= strLen) revert ContentLengthMismatch();
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        if (strLen == 1 && firstByteOfContent < 0x80) revert InvalidHeader();
                        return (1, strLen, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xbf) {
                        // Long string.
                        uint256 lenOfStrLen = prefix - 0xb7;
                        if (_in.length <= lenOfStrLen) revert ContentLengthMismatch();
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        if (firstByteOfContent == 0x00) revert InvalidHeader();
                        uint256 strLen;
                        assembly {
                            strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
                        }
                        if (strLen <= 55) revert InvalidHeader();
                        if (_in.length <= lenOfStrLen + strLen) revert ContentLengthMismatch();
                        return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
                    } else if (prefix <= 0xf7) {
                        // Short list.
                        // slither-disable-next-line variable-scope
                        uint256 listLen = prefix - 0xc0;
                        if (_in.length <= listLen) revert ContentLengthMismatch();
                        return (1, listLen, RLPItemType.LIST_ITEM);
                    } else {
                        // Long list.
                        uint256 lenOfListLen = prefix - 0xf7;
                        if (_in.length <= lenOfListLen) revert ContentLengthMismatch();
                        bytes1 firstByteOfContent;
                        assembly {
                            firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
                        }
                        if (firstByteOfContent == 0x00) revert InvalidHeader();
                        uint256 listLen;
                        assembly {
                            listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
                        }
                        if (listLen <= 55) revert InvalidHeader();
                        if (_in.length <= lenOfListLen + listLen) revert ContentLengthMismatch();
                        return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
                    }
                }
                /// @notice Copies the bytes from a memory location.
                /// @param _src    Pointer to the location to read from.
                /// @param _offset Offset to start reading from.
                /// @param _length Number of bytes to read.
                /// @return out_ Copied bytes.
                function _copy(MemoryPointer _src, uint256 _offset, uint256 _length) private pure returns (bytes memory out_) {
                    out_ = new bytes(_length);
                    if (_length == 0) {
                        return out_;
                    }
                    // Mostly based on Solidity's copy_memory_to_memory:
                    // https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
                    uint256 src = MemoryPointer.unwrap(_src) + _offset;
                    assembly {
                        let dest := add(out_, 32)
                        let i := 0
                        for { } lt(i, _length) { i := add(i, 32) } { mstore(add(dest, i), mload(add(src, i))) }
                        if gt(i, _length) { mstore(add(dest, _length), 0) }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library AddressUpgradeable {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @notice The length of an RLP item must be greater than zero to be decodable
            error EmptyItem();
            /// @notice The decoded item type for list is not a list item
            error UnexpectedString();
            /// @notice The RLP item has an invalid data remainder
            error InvalidDataRemainder();
            /// @notice Decoded item type for bytes is not a string item
            error UnexpectedList();
            /// @notice The length of the content must be greater than the RLP item length
            error ContentLengthMismatch();
            /// @notice Invalid RLP header for RLP item
            error InvalidHeader();
            

            File 3 of 6: Proxy
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Constants } from "../libraries/Constants.sol";
            /// @title Proxy
            /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
            ///         if the caller is address(0), meaning that the call originated from an off-chain
            ///         simulation.
            contract Proxy {
                /// @notice An event that is emitted each time the implementation is changed. This event is part
                ///         of the EIP-1967 specification.
                /// @param implementation The address of the implementation contract
                event Upgraded(address indexed implementation);
                /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                ///         EIP-1967 specification.
                /// @param previousAdmin The previous owner of the contract
                /// @param newAdmin      The new owner of the contract
                event AdminChanged(address previousAdmin, address newAdmin);
                /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                ///         eth_call to interact with this proxy without needing to use low-level storage
                ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                ///         normal EVM execution.
                modifier proxyCallIfNotAdmin() {
                    if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                        _;
                    } else {
                        // This WILL halt the call frame on completion.
                        _doProxyCall();
                    }
                }
                /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                ///         EIP-1967 admin storage slot so that accidental storage collision with the
                ///         implementation is not possible.
                /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                ///               transparent proxy interface.
                constructor(address _admin) {
                    _changeAdmin(_admin);
                }
                // slither-disable-next-line locked-ether
                receive() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                // slither-disable-next-line locked-ether
                fallback() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                /// @notice Set the implementation contract address. The code at the given address will execute
                ///         when this contract is called.
                /// @param _implementation Address of the implementation contract.
                function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                    _setImplementation(_implementation);
                }
                /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                ///         atomic execution of initialization-based upgrades.
                /// @param _implementation Address of the implementation contract.
                /// @param _data           Calldata to delegatecall the new implementation with.
                function upgradeToAndCall(
                    address _implementation,
                    bytes calldata _data
                )
                    public
                    payable
                    virtual
                    proxyCallIfNotAdmin
                    returns (bytes memory)
                {
                    _setImplementation(_implementation);
                    (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                    require(success, "Proxy: delegatecall to new implementation contract failed");
                    return returndata;
                }
                /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                /// @param _admin New owner of the proxy contract.
                function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                    _changeAdmin(_admin);
                }
                /// @notice Gets the owner of the proxy contract.
                /// @return Owner address.
                function admin() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getAdmin();
                }
                //// @notice Queries the implementation address.
                /// @return Implementation address.
                function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getImplementation();
                }
                /// @notice Sets the implementation address.
                /// @param _implementation New implementation address.
                function _setImplementation(address _implementation) internal {
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        sstore(proxyImplementation, _implementation)
                    }
                    emit Upgraded(_implementation);
                }
                /// @notice Changes the owner of the proxy contract.
                /// @param _admin New owner of the proxy contract.
                function _changeAdmin(address _admin) internal {
                    address previous = _getAdmin();
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        sstore(proxyOwner, _admin)
                    }
                    emit AdminChanged(previous, _admin);
                }
                /// @notice Performs the proxy call via a delegatecall.
                function _doProxyCall() internal {
                    address impl = _getImplementation();
                    require(impl != address(0), "Proxy: implementation not initialized");
                    assembly {
                        // Copy calldata into memory at 0x0....calldatasize.
                        calldatacopy(0x0, 0x0, calldatasize())
                        // Perform the delegatecall, make sure to pass all available gas.
                        let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                        // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                        // overwrite the calldata that we just copied into memory but that doesn't really
                        // matter because we'll be returning in a second anyway.
                        returndatacopy(0x0, 0x0, returndatasize())
                        // Success == 0 means a revert. We'll revert too and pass the data up.
                        if iszero(success) { revert(0x0, returndatasize()) }
                        // Otherwise we'll just return and pass the data up.
                        return(0x0, returndatasize())
                    }
                }
                /// @notice Queries the implementation address.
                /// @return Implementation address.
                function _getImplementation() internal view returns (address) {
                    address impl;
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        impl := sload(proxyImplementation)
                    }
                    return impl;
                }
                /// @notice Queries the owner of the proxy contract.
                /// @return Owner address.
                function _getAdmin() internal view returns (address) {
                    address owner;
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        owner := sload(proxyOwner)
                    }
                    return owner;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "../L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "../libraries/Burn.sol";
            import { Arithmetic } from "../libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }
            

            File 4 of 6: SuperchainConfig
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Storage } from "src/libraries/Storage.sol";
            /// @custom:audit none This contracts is not yet audited.
            /// @title SuperchainConfig
            /// @notice The SuperchainConfig contract is used to manage configuration of global superchain values.
            contract SuperchainConfig is Initializable, ISemver {
                /// @notice Enum representing different types of updates.
                /// @custom:value GUARDIAN            Represents an update to the guardian.
                enum UpdateType {
                    GUARDIAN
                }
                /// @notice Whether or not the Superchain is paused.
                bytes32 public constant PAUSED_SLOT = bytes32(uint256(keccak256("superchainConfig.paused")) - 1);
                /// @notice The address of the guardian, which can pause withdrawals from the System.
                ///         It can only be modified by an upgrade.
                bytes32 public constant GUARDIAN_SLOT = bytes32(uint256(keccak256("superchainConfig.guardian")) - 1);
                /// @notice Emitted when the pause is triggered.
                /// @param identifier A string helping to identify provenance of the pause transaction.
                event Paused(string identifier);
                /// @notice Emitted when the pause is lifted.
                event Unpaused();
                /// @notice Emitted when configuration is updated.
                /// @param updateType Type of update.
                /// @param data       Encoded update data.
                event ConfigUpdate(UpdateType indexed updateType, bytes data);
                /// @notice Semantic version.
                /// @custom:semver 1.1.0
                string public constant version = "1.1.0";
                /// @notice Constructs the SuperchainConfig contract.
                constructor() {
                    initialize({ _guardian: address(0), _paused: false });
                }
                /// @notice Initializer.
                /// @param _guardian    Address of the guardian, can pause the OptimismPortal.
                /// @param _paused      Initial paused status.
                function initialize(address _guardian, bool _paused) public initializer {
                    _setGuardian(_guardian);
                    if (_paused) {
                        _pause("Initializer paused");
                    }
                }
                /// @notice Getter for the guardian address.
                function guardian() public view returns (address guardian_) {
                    guardian_ = Storage.getAddress(GUARDIAN_SLOT);
                }
                /// @notice Getter for the current paused status.
                function paused() public view returns (bool paused_) {
                    paused_ = Storage.getBool(PAUSED_SLOT);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function pause(string memory _identifier) external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can pause");
                    _pause(_identifier);
                }
                /// @notice Pauses withdrawals.
                /// @param _identifier (Optional) A string to identify provenance of the pause transaction.
                function _pause(string memory _identifier) internal {
                    Storage.setBool(PAUSED_SLOT, true);
                    emit Paused(_identifier);
                }
                /// @notice Unpauses withdrawals.
                function unpause() external {
                    require(msg.sender == guardian(), "SuperchainConfig: only guardian can unpause");
                    Storage.setBool(PAUSED_SLOT, false);
                    emit Unpaused();
                }
                /// @notice Sets the guardian address. This is only callable during initialization, so an upgrade
                ///         will be required to change the guardian.
                /// @param _guardian The new guardian address.
                function _setGuardian(address _guardian) internal {
                    Storage.setAddress(GUARDIAN_SLOT, _guardian);
                    emit ConfigUpdate(UpdateType.GUARDIAN, abi.encode(_guardian));
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title ISemver
            /// @notice ISemver is a simple contract for ensuring that contracts are
            ///         versioned using semantic versioning.
            interface ISemver {
                /// @notice Getter for the semantic version of the contract. This is not
                ///         meant to be used onchain but instead meant to be used by offchain
                ///         tooling.
                /// @return Semver contract version as a string.
                function version() external view returns (string memory);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Storage
            /// @notice Storage handles reading and writing to arbitary storage locations
            library Storage {
                /// @notice Returns an address stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getAddress(bytes32 _slot) internal view returns (address addr_) {
                    assembly {
                        addr_ := sload(_slot)
                    }
                }
                /// @notice Stores an address in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _address The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting addresses
                ///      in arbitrary storage slots.
                function setAddress(bytes32 _slot, address _address) internal {
                    assembly {
                        sstore(_slot, _address)
                    }
                }
                /// @notice Returns a uint256 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getUint(bytes32 _slot) internal view returns (uint256 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The protocol version to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setUint(bytes32 _slot, uint256 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bytes32 stored in an arbitrary storage slot.
                ///         These storage slots decouple the storage layout from
                ///         solc's automation.
                /// @param _slot The storage slot to retrieve the address from.
                function getBytes32(bytes32 _slot) internal view returns (bytes32 value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
                /// @notice Stores a bytes32 value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the address in.
                /// @param _value The bytes32 value to store.
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBytes32(bytes32 _slot, bytes32 _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Stores a bool value in an arbitrary storage slot, `_slot`.
                /// @param _slot The storage slot to store the bool in.
                /// @param _value The bool value to store
                /// @dev WARNING! This function must be used cautiously, as it allows for overwriting values
                ///      in arbitrary storage slots.
                function setBool(bytes32 _slot, bool _value) internal {
                    assembly {
                        sstore(_slot, _value)
                    }
                }
                /// @notice Returns a bool stored in an arbitrary storage slot.
                /// @param _slot The storage slot to retrieve the bool from.
                function getBool(bytes32 _slot) internal view returns (bool value_) {
                    assembly {
                        value_ := sload(_slot)
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            

            File 5 of 6: Proxy
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Constants } from "../libraries/Constants.sol";
            /// @title Proxy
            /// @notice Proxy is a transparent proxy that passes through the call if the caller is the owner or
            ///         if the caller is address(0), meaning that the call originated from an off-chain
            ///         simulation.
            contract Proxy {
                /// @notice An event that is emitted each time the implementation is changed. This event is part
                ///         of the EIP-1967 specification.
                /// @param implementation The address of the implementation contract
                event Upgraded(address indexed implementation);
                /// @notice An event that is emitted each time the owner is upgraded. This event is part of the
                ///         EIP-1967 specification.
                /// @param previousAdmin The previous owner of the contract
                /// @param newAdmin      The new owner of the contract
                event AdminChanged(address previousAdmin, address newAdmin);
                /// @notice A modifier that reverts if not called by the owner or by address(0) to allow
                ///         eth_call to interact with this proxy without needing to use low-level storage
                ///         inspection. We assume that nobody is able to trigger calls from address(0) during
                ///         normal EVM execution.
                modifier proxyCallIfNotAdmin() {
                    if (msg.sender == _getAdmin() || msg.sender == address(0)) {
                        _;
                    } else {
                        // This WILL halt the call frame on completion.
                        _doProxyCall();
                    }
                }
                /// @notice Sets the initial admin during contract deployment. Admin address is stored at the
                ///         EIP-1967 admin storage slot so that accidental storage collision with the
                ///         implementation is not possible.
                /// @param _admin Address of the initial contract admin. Admin as the ability to access the
                ///               transparent proxy interface.
                constructor(address _admin) {
                    _changeAdmin(_admin);
                }
                // slither-disable-next-line locked-ether
                receive() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                // slither-disable-next-line locked-ether
                fallback() external payable {
                    // Proxy call by default.
                    _doProxyCall();
                }
                /// @notice Set the implementation contract address. The code at the given address will execute
                ///         when this contract is called.
                /// @param _implementation Address of the implementation contract.
                function upgradeTo(address _implementation) public virtual proxyCallIfNotAdmin {
                    _setImplementation(_implementation);
                }
                /// @notice Set the implementation and call a function in a single transaction. Useful to ensure
                ///         atomic execution of initialization-based upgrades.
                /// @param _implementation Address of the implementation contract.
                /// @param _data           Calldata to delegatecall the new implementation with.
                function upgradeToAndCall(
                    address _implementation,
                    bytes calldata _data
                )
                    public
                    payable
                    virtual
                    proxyCallIfNotAdmin
                    returns (bytes memory)
                {
                    _setImplementation(_implementation);
                    (bool success, bytes memory returndata) = _implementation.delegatecall(_data);
                    require(success, "Proxy: delegatecall to new implementation contract failed");
                    return returndata;
                }
                /// @notice Changes the owner of the proxy contract. Only callable by the owner.
                /// @param _admin New owner of the proxy contract.
                function changeAdmin(address _admin) public virtual proxyCallIfNotAdmin {
                    _changeAdmin(_admin);
                }
                /// @notice Gets the owner of the proxy contract.
                /// @return Owner address.
                function admin() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getAdmin();
                }
                //// @notice Queries the implementation address.
                /// @return Implementation address.
                function implementation() public virtual proxyCallIfNotAdmin returns (address) {
                    return _getImplementation();
                }
                /// @notice Sets the implementation address.
                /// @param _implementation New implementation address.
                function _setImplementation(address _implementation) internal {
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        sstore(proxyImplementation, _implementation)
                    }
                    emit Upgraded(_implementation);
                }
                /// @notice Changes the owner of the proxy contract.
                /// @param _admin New owner of the proxy contract.
                function _changeAdmin(address _admin) internal {
                    address previous = _getAdmin();
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        sstore(proxyOwner, _admin)
                    }
                    emit AdminChanged(previous, _admin);
                }
                /// @notice Performs the proxy call via a delegatecall.
                function _doProxyCall() internal {
                    address impl = _getImplementation();
                    require(impl != address(0), "Proxy: implementation not initialized");
                    assembly {
                        // Copy calldata into memory at 0x0....calldatasize.
                        calldatacopy(0x0, 0x0, calldatasize())
                        // Perform the delegatecall, make sure to pass all available gas.
                        let success := delegatecall(gas(), impl, 0x0, calldatasize(), 0x0, 0x0)
                        // Copy returndata into memory at 0x0....returndatasize. Note that this *will*
                        // overwrite the calldata that we just copied into memory but that doesn't really
                        // matter because we'll be returning in a second anyway.
                        returndatacopy(0x0, 0x0, returndatasize())
                        // Success == 0 means a revert. We'll revert too and pass the data up.
                        if iszero(success) { revert(0x0, returndatasize()) }
                        // Otherwise we'll just return and pass the data up.
                        return(0x0, returndatasize())
                    }
                }
                /// @notice Queries the implementation address.
                /// @return Implementation address.
                function _getImplementation() internal view returns (address) {
                    address impl;
                    bytes32 proxyImplementation = Constants.PROXY_IMPLEMENTATION_ADDRESS;
                    assembly {
                        impl := sload(proxyImplementation)
                    }
                    return impl;
                }
                /// @notice Queries the owner of the proxy contract.
                /// @return Owner address.
                function _getAdmin() internal view returns (address) {
                    address owner;
                    bytes32 proxyOwner = Constants.PROXY_OWNER_ADDRESS;
                    assembly {
                        owner := sload(proxyOwner)
                    }
                    return owner;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "../L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "../libraries/Burn.sol";
            import { Arithmetic } from "../libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }
            

            File 6 of 6: L2OutputOracle
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { ISemver } from "src/universal/ISemver.sol";
            import { Types } from "src/libraries/Types.sol";
            import { Constants } from "src/libraries/Constants.sol";
            /// @custom:proxied
            /// @title L2OutputOracle
            /// @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
            ///         commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
            ///         these outputs to verify information about the state of L2.
            contract L2OutputOracle is Initializable, ISemver {
                /// @notice The number of the first L2 block recorded in this contract.
                uint256 public startingBlockNumber;
                /// @notice The timestamp of the first L2 block recorded in this contract.
                uint256 public startingTimestamp;
                /// @notice An array of L2 output proposals.
                Types.OutputProposal[] internal l2Outputs;
                /// @notice The interval in L2 blocks at which checkpoints must be submitted.
                /// @custom:network-specific
                uint256 public submissionInterval;
                /// @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
                /// @custom:network-specific
                uint256 public l2BlockTime;
                /// @notice The address of the challenger. Can be updated via upgrade.
                /// @custom:network-specific
                address public challenger;
                /// @notice The address of the proposer. Can be updated via upgrade.
                /// @custom:network-specific
                address public proposer;
                /// @notice The minimum time (in seconds) that must elapse before a withdrawal can be finalized.
                /// @custom:network-specific
                uint256 public finalizationPeriodSeconds;
                /// @notice Emitted when an output is proposed.
                /// @param outputRoot    The output root.
                /// @param l2OutputIndex The index of the output in the l2Outputs array.
                /// @param l2BlockNumber The L2 block number of the output root.
                /// @param l1Timestamp   The L1 timestamp when proposed.
                event OutputProposed(
                    bytes32 indexed outputRoot, uint256 indexed l2OutputIndex, uint256 indexed l2BlockNumber, uint256 l1Timestamp
                );
                /// @notice Emitted when outputs are deleted.
                /// @param prevNextOutputIndex Next L2 output index before the deletion.
                /// @param newNextOutputIndex  Next L2 output index after the deletion.
                event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
                /// @notice Semantic version.
                /// @custom:semver 1.8.0
                string public constant version = "1.8.0";
                /// @notice Constructs the L2OutputOracle contract. Initializes variables to the same values as
                ///         in the getting-started config.
                constructor() {
                    initialize({
                        _submissionInterval: 1,
                        _l2BlockTime: 1,
                        _startingBlockNumber: 0,
                        _startingTimestamp: 0,
                        _proposer: address(0),
                        _challenger: address(0),
                        _finalizationPeriodSeconds: 0
                    });
                }
                /// @notice Initializer.
                /// @param _submissionInterval  Interval in blocks at which checkpoints must be submitted.
                /// @param _l2BlockTime         The time per L2 block, in seconds.
                /// @param _startingBlockNumber The number of the first L2 block.
                /// @param _startingTimestamp   The timestamp of the first L2 block.
                /// @param _proposer            The address of the proposer.
                /// @param _challenger          The address of the challenger.
                /// @param _finalizationPeriodSeconds The minimum time (in seconds) that must elapse before a withdrawal
                ///                                   can be finalized.
                function initialize(
                    uint256 _submissionInterval,
                    uint256 _l2BlockTime,
                    uint256 _startingBlockNumber,
                    uint256 _startingTimestamp,
                    address _proposer,
                    address _challenger,
                    uint256 _finalizationPeriodSeconds
                )
                    public
                    initializer
                {
                    require(_submissionInterval > 0, "L2OutputOracle: submission interval must be greater than 0");
                    require(_l2BlockTime > 0, "L2OutputOracle: L2 block time must be greater than 0");
                    require(
                        _startingTimestamp <= block.timestamp,
                        "L2OutputOracle: starting L2 timestamp must be less than current time"
                    );
                    submissionInterval = _submissionInterval;
                    l2BlockTime = _l2BlockTime;
                    startingBlockNumber = _startingBlockNumber;
                    startingTimestamp = _startingTimestamp;
                    proposer = _proposer;
                    challenger = _challenger;
                    finalizationPeriodSeconds = _finalizationPeriodSeconds;
                }
                /// @notice Getter for the submissionInterval.
                ///         Public getter is legacy and will be removed in the future. Use `submissionInterval` instead.
                /// @return Submission interval.
                /// @custom:legacy
                function SUBMISSION_INTERVAL() external view returns (uint256) {
                    return submissionInterval;
                }
                /// @notice Getter for the l2BlockTime.
                ///         Public getter is legacy and will be removed in the future. Use `l2BlockTime` instead.
                /// @return L2 block time.
                /// @custom:legacy
                function L2_BLOCK_TIME() external view returns (uint256) {
                    return l2BlockTime;
                }
                /// @notice Getter for the challenger address.
                ///         Public getter is legacy and will be removed in the future. Use `challenger` instead.
                /// @return Address of the challenger.
                /// @custom:legacy
                function CHALLENGER() external view returns (address) {
                    return challenger;
                }
                /// @notice Getter for the proposer address.
                ///         Public getter is legacy and will be removed in the future. Use `proposer` instead.
                /// @return Address of the proposer.
                /// @custom:legacy
                function PROPOSER() external view returns (address) {
                    return proposer;
                }
                /// @notice Getter for the finalizationPeriodSeconds.
                ///         Public getter is legacy and will be removed in the future. Use `finalizationPeriodSeconds` instead.
                /// @return Finalization period in seconds.
                /// @custom:legacy
                function FINALIZATION_PERIOD_SECONDS() external view returns (uint256) {
                    return finalizationPeriodSeconds;
                }
                /// @notice Deletes all output proposals after and including the proposal that corresponds to
                ///         the given output index. Only the challenger address can delete outputs.
                /// @param _l2OutputIndex Index of the first L2 output to be deleted.
                ///                       All outputs after this output will also be deleted.
                // solhint-disable-next-line ordering
                function deleteL2Outputs(uint256 _l2OutputIndex) external {
                    require(msg.sender == challenger, "L2OutputOracle: only the challenger address can delete outputs");
                    // Make sure we're not *increasing* the length of the array.
                    require(
                        _l2OutputIndex < l2Outputs.length, "L2OutputOracle: cannot delete outputs after the latest output index"
                    );
                    // Do not allow deleting any outputs that have already been finalized.
                    require(
                        block.timestamp - l2Outputs[_l2OutputIndex].timestamp < finalizationPeriodSeconds,
                        "L2OutputOracle: cannot delete outputs that have already been finalized"
                    );
                    uint256 prevNextL2OutputIndex = nextOutputIndex();
                    // Use assembly to delete the array elements because Solidity doesn't allow it.
                    assembly {
                        sstore(l2Outputs.slot, _l2OutputIndex)
                    }
                    emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
                }
                /// @notice Accepts an outputRoot and the timestamp of the corresponding L2 block.
                ///         The timestamp must be equal to the current value returned by `nextTimestamp()` in
                ///         order to be accepted. This function may only be called by the Proposer.
                /// @param _outputRoot    The L2 output of the checkpoint block.
                /// @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
                /// @param _l1BlockHash   A block hash which must be included in the current chain.
                /// @param _l1BlockNumber The block number with the specified block hash.
                function proposeL2Output(
                    bytes32 _outputRoot,
                    uint256 _l2BlockNumber,
                    bytes32 _l1BlockHash,
                    uint256 _l1BlockNumber
                )
                    external
                    payable
                {
                    require(msg.sender == proposer, "L2OutputOracle: only the proposer address can propose new outputs");
                    require(
                        _l2BlockNumber == nextBlockNumber(),
                        "L2OutputOracle: block number must be equal to next expected block number"
                    );
                    require(
                        computeL2Timestamp(_l2BlockNumber) < block.timestamp,
                        "L2OutputOracle: cannot propose L2 output in the future"
                    );
                    require(_outputRoot != bytes32(0), "L2OutputOracle: L2 output proposal cannot be the zero hash");
                    if (_l1BlockHash != bytes32(0)) {
                        // This check allows the proposer to propose an output based on a given L1 block,
                        // without fear that it will be reorged out.
                        // It will also revert if the blockheight provided is more than 256 blocks behind the
                        // chain tip (as the hash will return as zero). This does open the door to a griefing
                        // attack in which the proposer's submission is censored until the block is no longer
                        // retrievable, if the proposer is experiencing this attack it can simply leave out the
                        // blockhash value, and delay submission until it is confident that the L1 block is
                        // finalized.
                        require(
                            blockhash(_l1BlockNumber) == _l1BlockHash,
                            "L2OutputOracle: block hash does not match the hash at the expected height"
                        );
                    }
                    emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
                    l2Outputs.push(
                        Types.OutputProposal({
                            outputRoot: _outputRoot,
                            timestamp: uint128(block.timestamp),
                            l2BlockNumber: uint128(_l2BlockNumber)
                        })
                    );
                }
                /// @notice Returns an output by index. Needed to return a struct instead of a tuple.
                /// @param _l2OutputIndex Index of the output to return.
                /// @return The output at the given index.
                function getL2Output(uint256 _l2OutputIndex) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[_l2OutputIndex];
                }
                /// @notice Returns the index of the L2 output that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return Index of the first checkpoint that commits to the given L2 block number.
                function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
                    // Make sure an output for this block number has actually been proposed.
                    require(
                        _l2BlockNumber <= latestBlockNumber(),
                        "L2OutputOracle: cannot get output for a block that has not been proposed"
                    );
                    // Make sure there's at least one output proposed.
                    require(l2Outputs.length > 0, "L2OutputOracle: cannot get output as no outputs have been proposed yet");
                    // Find the output via binary search, guaranteed to exist.
                    uint256 lo = 0;
                    uint256 hi = l2Outputs.length;
                    while (lo < hi) {
                        uint256 mid = (lo + hi) / 2;
                        if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
                            lo = mid + 1;
                        } else {
                            hi = mid;
                        }
                    }
                    return lo;
                }
                /// @notice Returns the L2 output proposal that checkpoints a given L2 block number.
                ///         Uses a binary search to find the first output greater than or equal to the given
                ///         block.
                /// @param _l2BlockNumber L2 block number to find a checkpoint for.
                /// @return First checkpoint that commits to the given L2 block number.
                function getL2OutputAfter(uint256 _l2BlockNumber) external view returns (Types.OutputProposal memory) {
                    return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
                }
                /// @notice Returns the number of outputs that have been proposed.
                ///         Will revert if no outputs have been proposed yet.
                /// @return The number of outputs that have been proposed.
                function latestOutputIndex() external view returns (uint256) {
                    return l2Outputs.length - 1;
                }
                /// @notice Returns the index of the next output to be proposed.
                /// @return The index of the next output to be proposed.
                function nextOutputIndex() public view returns (uint256) {
                    return l2Outputs.length;
                }
                /// @notice Returns the block number of the latest submitted L2 output proposal.
                ///         If no proposals been submitted yet then this function will return the starting
                ///         block number.
                /// @return Latest submitted L2 block number.
                function latestBlockNumber() public view returns (uint256) {
                    return l2Outputs.length == 0 ? startingBlockNumber : l2Outputs[l2Outputs.length - 1].l2BlockNumber;
                }
                /// @notice Computes the block number of the next L2 block that needs to be checkpointed.
                /// @return Next L2 block number.
                function nextBlockNumber() public view returns (uint256) {
                    return latestBlockNumber() + submissionInterval;
                }
                /// @notice Returns the L2 timestamp corresponding to a given L2 block number.
                /// @param _l2BlockNumber The L2 block number of the target block.
                /// @return L2 timestamp of the given block.
                function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
                    return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * l2BlockTime);
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)
            pragma solidity ^0.8.2;
            import "../../utils/Address.sol";
            /**
             * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
             * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
             * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
             * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
             *
             * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
             * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
             * case an upgrade adds a module that needs to be initialized.
             *
             * For example:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * contract MyToken is ERC20Upgradeable {
             *     function initialize() initializer public {
             *         __ERC20_init("MyToken", "MTK");
             *     }
             * }
             * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
             *     function initializeV2() reinitializer(2) public {
             *         __ERC20Permit_init("MyToken");
             *     }
             * }
             * ```
             *
             * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
             * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
             *
             * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
             * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
             *
             * [CAUTION]
             * ====
             * Avoid leaving a contract uninitialized.
             *
             * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
             * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
             * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
             *
             * [.hljs-theme-light.nopadding]
             * ```
             * /// @custom:oz-upgrades-unsafe-allow constructor
             * constructor() {
             *     _disableInitializers();
             * }
             * ```
             * ====
             */
            abstract contract Initializable {
                /**
                 * @dev Indicates that the contract has been initialized.
                 * @custom:oz-retyped-from bool
                 */
                uint8 private _initialized;
                /**
                 * @dev Indicates that the contract is in the process of being initialized.
                 */
                bool private _initializing;
                /**
                 * @dev Triggered when the contract has been initialized or reinitialized.
                 */
                event Initialized(uint8 version);
                /**
                 * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
                 * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
                 */
                modifier initializer() {
                    bool isTopLevelCall = !_initializing;
                    require(
                        (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
                        "Initializable: contract is already initialized"
                    );
                    _initialized = 1;
                    if (isTopLevelCall) {
                        _initializing = true;
                    }
                    _;
                    if (isTopLevelCall) {
                        _initializing = false;
                        emit Initialized(1);
                    }
                }
                /**
                 * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
                 * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
                 * used to initialize parent contracts.
                 *
                 * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
                 * initialization step. This is essential to configure modules that are added through upgrades and that require
                 * initialization.
                 *
                 * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
                 * a contract, executing them in the right order is up to the developer or operator.
                 */
                modifier reinitializer(uint8 version) {
                    require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
                    _initialized = version;
                    _initializing = true;
                    _;
                    _initializing = false;
                    emit Initialized(version);
                }
                /**
                 * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
                 * {initializer} and {reinitializer} modifiers, directly or indirectly.
                 */
                modifier onlyInitializing() {
                    require(_initializing, "Initializable: contract is not initializing");
                    _;
                }
                /**
                 * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
                 * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
                 * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
                 * through proxies.
                 */
                function _disableInitializers() internal virtual {
                    require(!_initializing, "Initializable: contract is initializing");
                    if (_initialized < type(uint8).max) {
                        _initialized = type(uint8).max;
                        emit Initialized(type(uint8).max);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title ISemver
            /// @notice ISemver is a simple contract for ensuring that contracts are
            ///         versioned using semantic versioning.
            interface ISemver {
                /// @notice Getter for the semantic version of the contract. This is not
                ///         meant to be used onchain but instead meant to be used by offchain
                ///         tooling.
                /// @return Semver contract version as a string.
                function version() external view returns (string memory);
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            /// @title Types
            /// @notice Contains various types used throughout the Optimism contract system.
            library Types {
                /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
                ///         timestamp that the output root is posted. This timestamp is used to verify that the
                ///         finalization period has passed since the output root was submitted.
                /// @custom:field outputRoot    Hash of the L2 output.
                /// @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
                /// @custom:field l2BlockNumber L2 block number that the output corresponds to.
                struct OutputProposal {
                    bytes32 outputRoot;
                    uint128 timestamp;
                    uint128 l2BlockNumber;
                }
                /// @notice Struct representing the elements that are hashed together to generate an output root
                ///         which itself represents a snapshot of the L2 state.
                /// @custom:field version                  Version of the output root.
                /// @custom:field stateRoot                Root of the state trie at the block of this output.
                /// @custom:field messagePasserStorageRoot Root of the message passer storage trie.
                /// @custom:field latestBlockhash          Hash of the block this output was generated from.
                struct OutputRootProof {
                    bytes32 version;
                    bytes32 stateRoot;
                    bytes32 messagePasserStorageRoot;
                    bytes32 latestBlockhash;
                }
                /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
                ///         user (as opposed to a system deposit transaction generated by the system).
                /// @custom:field from        Address of the sender of the transaction.
                /// @custom:field to          Address of the recipient of the transaction.
                /// @custom:field isCreation  True if the transaction is a contract creation.
                /// @custom:field value       Value to send to the recipient.
                /// @custom:field mint        Amount of ETH to mint.
                /// @custom:field gasLimit    Gas limit of the transaction.
                /// @custom:field data        Data of the transaction.
                /// @custom:field l1BlockHash Hash of the block the transaction was submitted in.
                /// @custom:field logIndex    Index of the log in the block the transaction was submitted in.
                struct UserDepositTransaction {
                    address from;
                    address to;
                    bool isCreation;
                    uint256 value;
                    uint256 mint;
                    uint64 gasLimit;
                    bytes data;
                    bytes32 l1BlockHash;
                    uint256 logIndex;
                }
                /// @notice Struct representing a withdrawal transaction.
                /// @custom:field nonce    Nonce of the withdrawal transaction
                /// @custom:field sender   Address of the sender of the transaction.
                /// @custom:field target   Address of the recipient of the transaction.
                /// @custom:field value    Value to send to the recipient.
                /// @custom:field gasLimit Gas limit of the transaction.
                /// @custom:field data     Data of the transaction.
                struct WithdrawalTransaction {
                    uint256 nonce;
                    address sender;
                    address target;
                    uint256 value;
                    uint256 gasLimit;
                    bytes data;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { ResourceMetering } from "src/L1/ResourceMetering.sol";
            /// @title Constants
            /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
            ///         the stuff used in multiple contracts. Constants that only apply to a single contract
            ///         should be defined in that contract instead.
            library Constants {
                /// @notice Special address to be used as the tx origin for gas estimation calls in the
                ///         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
                ///         the minimum gas limit specified by the user is not actually enough to execute the
                ///         given message and you're attempting to estimate the actual necessary gas limit. We
                ///         use address(1) because it's the ecrecover precompile and therefore guaranteed to
                ///         never have any code on any EVM chain.
                address internal constant ESTIMATION_ADDRESS = address(1);
                /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
                ///         CrossDomainMessenger contracts before an actual sender is set. This value is
                ///         non-zero to reduce the gas cost of message passing transactions.
                address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
                /// @notice The storage slot that holds the address of a proxy implementation.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)`
                bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS =
                    0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
                /// @notice The storage slot that holds the address of the owner.
                /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)`
                bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
                /// @notice Returns the default values for the ResourceConfig. These are the recommended values
                ///         for a production network.
                function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) {
                    ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
                        maxResourceLimit: 20_000_000,
                        elasticityMultiplier: 10,
                        baseFeeMaxChangeDenominator: 8,
                        minimumBaseFee: 1 gwei,
                        systemTxMaxGas: 1_000_000,
                        maximumBaseFee: type(uint128).max
                    });
                    return config;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)
            pragma solidity ^0.8.1;
            /**
             * @dev Collection of functions related to the address type
             */
            library Address {
                /**
                 * @dev Returns true if `account` is a contract.
                 *
                 * [IMPORTANT]
                 * ====
                 * It is unsafe to assume that an address for which this function returns
                 * false is an externally-owned account (EOA) and not a contract.
                 *
                 * Among others, `isContract` will return false for the following
                 * types of addresses:
                 *
                 *  - an externally-owned account
                 *  - a contract in construction
                 *  - an address where a contract will be created
                 *  - an address where a contract lived, but was destroyed
                 * ====
                 *
                 * [IMPORTANT]
                 * ====
                 * You shouldn't rely on `isContract` to protect against flash loan attacks!
                 *
                 * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
                 * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
                 * constructor.
                 * ====
                 */
                function isContract(address account) internal view returns (bool) {
                    // This method relies on extcodesize/address.code.length, which returns 0
                    // for contracts in construction, since the code is only stored at the end
                    // of the constructor execution.
                    return account.code.length > 0;
                }
                /**
                 * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
                 * `recipient`, forwarding all available gas and reverting on errors.
                 *
                 * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
                 * of certain opcodes, possibly making contracts go over the 2300 gas limit
                 * imposed by `transfer`, making them unable to receive funds via
                 * `transfer`. {sendValue} removes this limitation.
                 *
                 * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
                 *
                 * IMPORTANT: because control is transferred to `recipient`, care must be
                 * taken to not create reentrancy vulnerabilities. Consider using
                 * {ReentrancyGuard} or the
                 * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
                 */
                function sendValue(address payable recipient, uint256 amount) internal {
                    require(address(this).balance >= amount, "Address: insufficient balance");
                    (bool success, ) = recipient.call{value: amount}("");
                    require(success, "Address: unable to send value, recipient may have reverted");
                }
                /**
                 * @dev Performs a Solidity function call using a low level `call`. A
                 * plain `call` is an unsafe replacement for a function call: use this
                 * function instead.
                 *
                 * If `target` reverts with a revert reason, it is bubbled up by this
                 * function (like regular Solidity function calls).
                 *
                 * Returns the raw returned data. To convert to the expected return value,
                 * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
                 *
                 * Requirements:
                 *
                 * - `target` must be a contract.
                 * - calling `target` with `data` must not revert.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionCall(target, data, "Address: low-level call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
                 * `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, 0, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but also transferring `value` wei to `target`.
                 *
                 * Requirements:
                 *
                 * - the calling contract must have an ETH balance of at least `value`.
                 * - the called Solidity function must be `payable`.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value
                ) internal returns (bytes memory) {
                    return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
                 * with `errorMessage` as a fallback revert reason when `target` reverts.
                 *
                 * _Available since v3.1._
                 */
                function functionCallWithValue(
                    address target,
                    bytes memory data,
                    uint256 value,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(address(this).balance >= value, "Address: insufficient balance for call");
                    require(isContract(target), "Address: call to non-contract");
                    (bool success, bytes memory returndata) = target.call{value: value}(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                    return functionStaticCall(target, data, "Address: low-level static call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a static call.
                 *
                 * _Available since v3.3._
                 */
                function functionStaticCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal view returns (bytes memory) {
                    require(isContract(target), "Address: static call to non-contract");
                    (bool success, bytes memory returndata) = target.staticcall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                    return functionDelegateCall(target, data, "Address: low-level delegate call failed");
                }
                /**
                 * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
                 * but performing a delegate call.
                 *
                 * _Available since v3.4._
                 */
                function functionDelegateCall(
                    address target,
                    bytes memory data,
                    string memory errorMessage
                ) internal returns (bytes memory) {
                    require(isContract(target), "Address: delegate call to non-contract");
                    (bool success, bytes memory returndata) = target.delegatecall(data);
                    return verifyCallResult(success, returndata, errorMessage);
                }
                /**
                 * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
                 * revert reason using the provided one.
                 *
                 * _Available since v4.3._
                 */
                function verifyCallResult(
                    bool success,
                    bytes memory returndata,
                    string memory errorMessage
                ) internal pure returns (bytes memory) {
                    if (success) {
                        return returndata;
                    } else {
                        // Look for revert reason and bubble it up if present
                        if (returndata.length > 0) {
                            // The easiest way to bubble the revert reason is using memory via assembly
                            /// @solidity memory-safe-assembly
                            assembly {
                                let returndata_size := mload(returndata)
                                revert(add(32, returndata), returndata_size)
                            }
                        } else {
                            revert(errorMessage);
                        }
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
            import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
            import { Burn } from "src/libraries/Burn.sol";
            import { Arithmetic } from "src/libraries/Arithmetic.sol";
            /// @custom:upgradeable
            /// @title ResourceMetering
            /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
            ///         updates automatically based on current demand.
            abstract contract ResourceMetering is Initializable {
                /// @notice Represents the various parameters that control the way in which resources are
                ///         metered. Corresponds to the EIP-1559 resource metering system.
                /// @custom:field prevBaseFee   Base fee from the previous block(s).
                /// @custom:field prevBoughtGas Amount of gas bought so far in the current block.
                /// @custom:field prevBlockNum  Last block number that the base fee was updated.
                struct ResourceParams {
                    uint128 prevBaseFee;
                    uint64 prevBoughtGas;
                    uint64 prevBlockNum;
                }
                /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
                ///         market. These values should be set with care as it is possible to set them in
                ///         a way that breaks the deposit gas market. The target resource limit is defined as
                ///         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
                ///         single word. There is additional space for additions in the future.
                /// @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
                ///                                            can be purchased per block.
                /// @custom:field elasticityMultiplier         Determines the target resource limit along with
                ///                                            the resource limit.
                /// @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
                /// @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
                ///                                            value.
                /// @custom:field systemTxMaxGas               The amount of gas supplied to the system
                ///                                            transaction. This should be set to the same
                ///                                            number that the op-node sets as the gas limit
                ///                                            for the system transaction.
                /// @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
                ///                                            value.
                struct ResourceConfig {
                    uint32 maxResourceLimit;
                    uint8 elasticityMultiplier;
                    uint8 baseFeeMaxChangeDenominator;
                    uint32 minimumBaseFee;
                    uint32 systemTxMaxGas;
                    uint128 maximumBaseFee;
                }
                /// @notice EIP-1559 style gas parameters.
                ResourceParams public params;
                /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
                uint256[48] private __gap;
                /// @notice Meters access to a function based an amount of a requested resource.
                /// @param _amount Amount of the resource requested.
                modifier metered(uint64 _amount) {
                    // Record initial gas amount so we can refund for it later.
                    uint256 initialGas = gasleft();
                    // Run the underlying function.
                    _;
                    // Run the metering function.
                    _metered(_amount, initialGas);
                }
                /// @notice An internal function that holds all of the logic for metering a resource.
                /// @param _amount     Amount of the resource requested.
                /// @param _initialGas The amount of gas before any modifier execution.
                function _metered(uint64 _amount, uint256 _initialGas) internal {
                    // Update block number and base fee if necessary.
                    uint256 blockDiff = block.number - params.prevBlockNum;
                    ResourceConfig memory config = _resourceConfig();
                    int256 targetResourceLimit =
                        int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier));
                    if (blockDiff > 0) {
                        // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
                        // at which deposits can be created and therefore limit the potential for deposits to
                        // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
                        int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
                        int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta)
                            / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));
                        // Update base fee by adding the base fee delta and clamp the resulting value between
                        // min and max.
                        int256 newBaseFee = Arithmetic.clamp({
                            _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                            _min: int256(uint256(config.minimumBaseFee)),
                            _max: int256(uint256(config.maximumBaseFee))
                        });
                        // If we skipped more than one block, we also need to account for every empty block.
                        // Empty block means there was no demand for deposits in that block, so we should
                        // reflect this lack of demand in the fee.
                        if (blockDiff > 1) {
                            // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                            // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                            // between min and max.
                            newBaseFee = Arithmetic.clamp({
                                _value: Arithmetic.cdexp({
                                    _coefficient: newBaseFee,
                                    _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                                    _exponent: int256(blockDiff - 1)
                                }),
                                _min: int256(uint256(config.minimumBaseFee)),
                                _max: int256(uint256(config.maximumBaseFee))
                            });
                        }
                        // Update new base fee, reset bought gas, and update block number.
                        params.prevBaseFee = uint128(uint256(newBaseFee));
                        params.prevBoughtGas = 0;
                        params.prevBlockNum = uint64(block.number);
                    }
                    // Make sure we can actually buy the resource amount requested by the user.
                    params.prevBoughtGas += _amount;
                    require(
                        int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
                        "ResourceMetering: cannot buy more gas than available gas limit"
                    );
                    // Determine the amount of ETH to be paid.
                    uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);
                    // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
                    // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
                    // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
                    // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
                    // during any 1 day period in the last 5 years, so should be fine.
                    uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);
                    // Give the user a refund based on the amount of gas they used to do all of the work up to
                    // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
                    // effectively like a dynamic stipend (with a minimum value).
                    uint256 usedGas = _initialGas - gasleft();
                    if (gasCost > usedGas) {
                        Burn.gas(gasCost - usedGas);
                    }
                }
                /// @notice Virtual function that returns the resource config.
                ///         Contracts that inherit this contract must implement this function.
                /// @return ResourceConfig
                function _resourceConfig() internal virtual returns (ResourceConfig memory);
                /// @notice Sets initial resource parameter values.
                ///         This function must either be called by the initializer function of an upgradeable
                ///         child contract.
                // solhint-disable-next-line func-name-mixedcase
                function __ResourceMetering_init() internal onlyInitializing {
                    if (params.prevBlockNum == 0) {
                        params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) });
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard math utilities missing in the Solidity language.
             */
            library Math {
                enum Rounding {
                    Down, // Toward negative infinity
                    Up, // Toward infinity
                    Zero // Toward zero
                }
                /**
                 * @dev Returns the largest of two numbers.
                 */
                function max(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two numbers.
                 */
                function min(uint256 a, uint256 b) internal pure returns (uint256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two numbers. The result is rounded towards
                 * zero.
                 */
                function average(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b) / 2 can overflow.
                    return (a & b) + (a ^ b) / 2;
                }
                /**
                 * @dev Returns the ceiling of the division of two numbers.
                 *
                 * This differs from standard division with `/` in that it rounds up instead
                 * of rounding down.
                 */
                function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
                    // (a + b - 1) / b can overflow on addition, so we distribute.
                    return a == 0 ? 0 : (a - 1) / b + 1;
                }
                /**
                 * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
                 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
                 * with further edits by Uniswap Labs also under MIT license.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 result) {
                    unchecked {
                        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                        // variables such that product = prod1 * 2^256 + prod0.
                        uint256 prod0; // Least significant 256 bits of the product
                        uint256 prod1; // Most significant 256 bits of the product
                        assembly {
                            let mm := mulmod(x, y, not(0))
                            prod0 := mul(x, y)
                            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                        }
                        // Handle non-overflow cases, 256 by 256 division.
                        if (prod1 == 0) {
                            return prod0 / denominator;
                        }
                        // Make sure the result is less than 2^256. Also prevents denominator == 0.
                        require(denominator > prod1);
                        ///////////////////////////////////////////////
                        // 512 by 256 division.
                        ///////////////////////////////////////////////
                        // Make division exact by subtracting the remainder from [prod1 prod0].
                        uint256 remainder;
                        assembly {
                            // Compute remainder using mulmod.
                            remainder := mulmod(x, y, denominator)
                            // Subtract 256 bit number from 512 bit number.
                            prod1 := sub(prod1, gt(remainder, prod0))
                            prod0 := sub(prod0, remainder)
                        }
                        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                        // See https://cs.stackexchange.com/q/138556/92363.
                        // Does not overflow because the denominator cannot be zero at this stage in the function.
                        uint256 twos = denominator & (~denominator + 1);
                        assembly {
                            // Divide denominator by twos.
                            denominator := div(denominator, twos)
                            // Divide [prod1 prod0] by twos.
                            prod0 := div(prod0, twos)
                            // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                            twos := add(div(sub(0, twos), twos), 1)
                        }
                        // Shift in bits from prod1 into prod0.
                        prod0 |= prod1 * twos;
                        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                        // four bits. That is, denominator * inv = 1 mod 2^4.
                        uint256 inverse = (3 * denominator) ^ 2;
                        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                        // in modular arithmetic, doubling the correct bits in each step.
                        inverse *= 2 - denominator * inverse; // inverse mod 2^8
                        inverse *= 2 - denominator * inverse; // inverse mod 2^16
                        inverse *= 2 - denominator * inverse; // inverse mod 2^32
                        inverse *= 2 - denominator * inverse; // inverse mod 2^64
                        inverse *= 2 - denominator * inverse; // inverse mod 2^128
                        inverse *= 2 - denominator * inverse; // inverse mod 2^256
                        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                        // is no longer required.
                        result = prod0 * inverse;
                        return result;
                    }
                }
                /**
                 * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
                 */
                function mulDiv(
                    uint256 x,
                    uint256 y,
                    uint256 denominator,
                    Rounding rounding
                ) internal pure returns (uint256) {
                    uint256 result = mulDiv(x, y, denominator);
                    if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                        result += 1;
                    }
                    return result;
                }
                /**
                 * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
                 *
                 * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
                 */
                function sqrt(uint256 a) internal pure returns (uint256) {
                    if (a == 0) {
                        return 0;
                    }
                    // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
                    // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
                    // `msb(a) <= a < 2*msb(a)`.
                    // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
                    // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
                    // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
                    // good first aproximation of `sqrt(a)` with at least 1 correct bit.
                    uint256 result = 1;
                    uint256 x = a;
                    if (x >> 128 > 0) {
                        x >>= 128;
                        result <<= 64;
                    }
                    if (x >> 64 > 0) {
                        x >>= 64;
                        result <<= 32;
                    }
                    if (x >> 32 > 0) {
                        x >>= 32;
                        result <<= 16;
                    }
                    if (x >> 16 > 0) {
                        x >>= 16;
                        result <<= 8;
                    }
                    if (x >> 8 > 0) {
                        x >>= 8;
                        result <<= 4;
                    }
                    if (x >> 4 > 0) {
                        x >>= 4;
                        result <<= 2;
                    }
                    if (x >> 2 > 0) {
                        result <<= 1;
                    }
                    // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
                    // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
                    // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
                    // into the expected uint128 result.
                    unchecked {
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        result = (result + a / result) >> 1;
                        return min(result, a / result);
                    }
                }
                /**
                 * @notice Calculates sqrt(a), following the selected rounding direction.
                 */
                function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
                    uint256 result = sqrt(a);
                    if (rounding == Rounding.Up && result * result < a) {
                        result += 1;
                    }
                    return result;
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity 0.8.15;
            /// @title Burn
            /// @notice Utilities for burning stuff.
            library Burn {
                /// @notice Burns a given amount of ETH.
                /// @param _amount Amount of ETH to burn.
                function eth(uint256 _amount) internal {
                    new Burner{ value: _amount }();
                }
                /// @notice Burns a given amount of gas.
                /// @param _amount Amount of gas to burn.
                function gas(uint256 _amount) internal view {
                    uint256 i = 0;
                    uint256 initialGas = gasleft();
                    while (initialGas - gasleft() < _amount) {
                        ++i;
                    }
                }
            }
            /// @title Burner
            /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
            ///         the contract from the circulating supply. Self-destructing is the only way to remove ETH
            ///         from the circulating supply.
            contract Burner {
                constructor() payable {
                    selfdestruct(payable(address(this)));
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity ^0.8.0;
            import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
            import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
            /// @title Arithmetic
            /// @notice Even more math than before.
            library Arithmetic {
                /// @notice Clamps a value between a minimum and maximum.
                /// @param _value The value to clamp.
                /// @param _min   The minimum value.
                /// @param _max   The maximum value.
                /// @return The clamped value.
                function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) {
                    return SignedMath.min(SignedMath.max(_value, _min), _max);
                }
                /// @notice (c)oefficient (d)enominator (exp)onentiation function.
                ///         Returns the result of: c * (1 - 1/d)^exp.
                /// @param _coefficient Coefficient of the function.
                /// @param _denominator Fractional denominator.
                /// @param _exponent    Power function exponent.
                /// @return Result of c * (1 - 1/d)^exp.
                function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) {
                    return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
                }
            }
            // SPDX-License-Identifier: MIT
            // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol)
            pragma solidity ^0.8.0;
            /**
             * @dev Standard signed math utilities missing in the Solidity language.
             */
            library SignedMath {
                /**
                 * @dev Returns the largest of two signed numbers.
                 */
                function max(int256 a, int256 b) internal pure returns (int256) {
                    return a >= b ? a : b;
                }
                /**
                 * @dev Returns the smallest of two signed numbers.
                 */
                function min(int256 a, int256 b) internal pure returns (int256) {
                    return a < b ? a : b;
                }
                /**
                 * @dev Returns the average of two signed numbers without overflow.
                 * The result is rounded towards zero.
                 */
                function average(int256 a, int256 b) internal pure returns (int256) {
                    // Formula from the book "Hacker's Delight"
                    int256 x = (a & b) + ((a ^ b) >> 1);
                    return x + (int256(uint256(x) >> 255) & (a ^ b));
                }
                /**
                 * @dev Returns the absolute unsigned value of a signed value.
                 */
                function abs(int256 n) internal pure returns (uint256) {
                    unchecked {
                        // must be unchecked in order to support `n = type(int256).min`
                        return uint256(n >= 0 ? n : -n);
                    }
                }
            }
            // SPDX-License-Identifier: MIT
            pragma solidity >=0.8.0;
            /// @notice Arithmetic library with operations for fixed-point numbers.
            /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
            library FixedPointMathLib {
                /*//////////////////////////////////////////////////////////////
                                SIMPLIFIED FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
                function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
                }
                function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
                }
                function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
                }
                function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
                    return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
                }
                function powWad(int256 x, int256 y) internal pure returns (int256) {
                    // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
                    return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
                }
                function expWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        // When the result is < 0.5 we return zero. This happens when
                        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
                        if (x <= -42139678854452767551) return 0;
                        // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
                        // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
                        if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
                        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
                        // for more intermediate precision and a binary basis. This base conversion
                        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
                        x = (x << 78) / 5**18;
                        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
                        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
                        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
                        int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
                        x = x - k * 54916777467707473351141471128;
                        // k is in the range [-61, 195].
                        // Evaluate using a (6, 7)-term rational approximation.
                        // p is made monic, we'll multiply by a scale factor later.
                        int256 y = x + 1346386616545796478920950773328;
                        y = ((y * x) >> 96) + 57155421227552351082224309758442;
                        int256 p = y + x - 94201549194550492254356042504812;
                        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
                        p = p * x + (4385272521454847904659076985693276 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        int256 q = x - 2855989394907223263936484059900;
                        q = ((q * x) >> 96) + 50020603652535783019961831881945;
                        q = ((q * x) >> 96) - 533845033583426703283633433725380;
                        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
                        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
                        q = ((q * x) >> 96) + 26449188498355588339934803723976023;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial won't have zeros in the domain as all its roots are complex.
                            // No scaling is necessary because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r should be in the range (0.09, 0.25) * 2**96.
                        // We now need to multiply r by:
                        // * the scale factor s = ~6.031367120.
                        // * the 2**k factor from the range reduction.
                        // * the 1e18 / 2**96 factor for base conversion.
                        // We do this all at once, with an intermediate result in 2**213
                        // basis, so the final right shift is always by a positive amount.
                        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
                    }
                }
                function lnWad(int256 x) internal pure returns (int256 r) {
                    unchecked {
                        require(x > 0, "UNDEFINED");
                        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
                        // We do this by multiplying by 2**96 / 10**18. But since
                        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
                        // and add ln(2**96 / 10**18) at the end.
                        // Reduce range of x to (1, 2) * 2**96
                        // ln(2^k * x) = k * ln(2) + ln(x)
                        int256 k = int256(log2(uint256(x))) - 96;
                        x <<= uint256(159 - k);
                        x = int256(uint256(x) >> 159);
                        // Evaluate using a (8, 8)-term rational approximation.
                        // p is made monic, we will multiply by a scale factor later.
                        int256 p = x + 3273285459638523848632254066296;
                        p = ((p * x) >> 96) + 24828157081833163892658089445524;
                        p = ((p * x) >> 96) + 43456485725739037958740375743393;
                        p = ((p * x) >> 96) - 11111509109440967052023855526967;
                        p = ((p * x) >> 96) - 45023709667254063763336534515857;
                        p = ((p * x) >> 96) - 14706773417378608786704636184526;
                        p = p * x - (795164235651350426258249787498 << 96);
                        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
                        // q is monic by convention.
                        int256 q = x + 5573035233440673466300451813936;
                        q = ((q * x) >> 96) + 71694874799317883764090561454958;
                        q = ((q * x) >> 96) + 283447036172924575727196451306956;
                        q = ((q * x) >> 96) + 401686690394027663651624208769553;
                        q = ((q * x) >> 96) + 204048457590392012362485061816622;
                        q = ((q * x) >> 96) + 31853899698501571402653359427138;
                        q = ((q * x) >> 96) + 909429971244387300277376558375;
                        assembly {
                            // Div in assembly because solidity adds a zero check despite the unchecked.
                            // The q polynomial is known not to have zeros in the domain.
                            // No scaling required because p is already 2**96 too large.
                            r := sdiv(p, q)
                        }
                        // r is in the range (0, 0.125) * 2**96
                        // Finalization, we need to:
                        // * multiply by the scale factor s = 5.549…
                        // * add ln(2**96 / 10**18)
                        // * add k * ln(2)
                        // * multiply by 10**18 / 2**96 = 5**18 >> 78
                        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
                        r *= 1677202110996718588342820967067443963516166;
                        // add ln(2) * k * 5e18 * 2**192
                        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
                        // add ln(2**96 / 10**18) * 5e18 * 2**192
                        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
                        // base conversion: mul 2**18 / 2**192
                        r >>= 174;
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                LOW LEVEL FIXED POINT OPERATIONS
                //////////////////////////////////////////////////////////////*/
                function mulDivDown(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // Divide z by the denominator.
                        z := div(z, denominator)
                    }
                }
                function mulDivUp(
                    uint256 x,
                    uint256 y,
                    uint256 denominator
                ) internal pure returns (uint256 z) {
                    assembly {
                        // Store x * y in z for now.
                        z := mul(x, y)
                        // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
                        if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                            revert(0, 0)
                        }
                        // First, divide z - 1 by the denominator and add 1.
                        // We allow z - 1 to underflow if z is 0, because we multiply the
                        // end result by 0 if z is zero, ensuring we return 0 if z is zero.
                        z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
                    }
                }
                function rpow(
                    uint256 x,
                    uint256 n,
                    uint256 scalar
                ) internal pure returns (uint256 z) {
                    assembly {
                        switch x
                        case 0 {
                            switch n
                            case 0 {
                                // 0 ** 0 = 1
                                z := scalar
                            }
                            default {
                                // 0 ** n = 0
                                z := 0
                            }
                        }
                        default {
                            switch mod(n, 2)
                            case 0 {
                                // If n is even, store scalar in z for now.
                                z := scalar
                            }
                            default {
                                // If n is odd, store x in z for now.
                                z := x
                            }
                            // Shifting right by 1 is like dividing by 2.
                            let half := shr(1, scalar)
                            for {
                                // Shift n right by 1 before looping to halve it.
                                n := shr(1, n)
                            } n {
                                // Shift n right by 1 each iteration to halve it.
                                n := shr(1, n)
                            } {
                                // Revert immediately if x ** 2 would overflow.
                                // Equivalent to iszero(eq(div(xx, x), x)) here.
                                if shr(128, x) {
                                    revert(0, 0)
                                }
                                // Store x squared.
                                let xx := mul(x, x)
                                // Round to the nearest number.
                                let xxRound := add(xx, half)
                                // Revert if xx + half overflowed.
                                if lt(xxRound, xx) {
                                    revert(0, 0)
                                }
                                // Set x to scaled xxRound.
                                x := div(xxRound, scalar)
                                // If n is even:
                                if mod(n, 2) {
                                    // Compute z * x.
                                    let zx := mul(z, x)
                                    // If z * x overflowed:
                                    if iszero(eq(div(zx, x), z)) {
                                        // Revert if x is non-zero.
                                        if iszero(iszero(x)) {
                                            revert(0, 0)
                                        }
                                    }
                                    // Round to the nearest number.
                                    let zxRound := add(zx, half)
                                    // Revert if zx + half overflowed.
                                    if lt(zxRound, zx) {
                                        revert(0, 0)
                                    }
                                    // Return properly scaled zxRound.
                                    z := div(zxRound, scalar)
                                }
                            }
                        }
                    }
                }
                /*//////////////////////////////////////////////////////////////
                                    GENERAL NUMBER UTILITIES
                //////////////////////////////////////////////////////////////*/
                function sqrt(uint256 x) internal pure returns (uint256 z) {
                    assembly {
                        let y := x // We start y at x, which will help us make our initial estimate.
                        z := 181 // The "correct" value is 1, but this saves a multiplication later.
                        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
                        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
                        // We check y >= 2^(k + 8) but shift right by k bits
                        // each branch to ensure that if x >= 256, then y >= 256.
                        if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                            y := shr(128, y)
                            z := shl(64, z)
                        }
                        if iszero(lt(y, 0x1000000000000000000)) {
                            y := shr(64, y)
                            z := shl(32, z)
                        }
                        if iszero(lt(y, 0x10000000000)) {
                            y := shr(32, y)
                            z := shl(16, z)
                        }
                        if iszero(lt(y, 0x1000000)) {
                            y := shr(16, y)
                            z := shl(8, z)
                        }
                        // Goal was to get z*z*y within a small factor of x. More iterations could
                        // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
                        // We ensured y >= 256 so that the relative difference between y and y+1 is small.
                        // That's not possible if x < 256 but we can just verify those cases exhaustively.
                        // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
                        // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
                        // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
                        // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
                        // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
                        // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
                        // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
                        // There is no overflow risk here since y < 2^136 after the first branch above.
                        z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
                        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        z := shr(1, add(z, div(x, z)))
                        // If x+1 is a perfect square, the Babylonian method cycles between
                        // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
                        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
                        // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
                        // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
                        z := sub(z, lt(div(x, z), z))
                    }
                }
                function log2(uint256 x) internal pure returns (uint256 r) {
                    require(x > 0, "UNDEFINED");
                    assembly {
                        r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
                        r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
                        r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
                        r := or(r, shl(4, lt(0xffff, shr(r, x))))
                        r := or(r, shl(3, lt(0xff, shr(r, x))))
                        r := or(r, shl(2, lt(0xf, shr(r, x))))
                        r := or(r, shl(1, lt(0x3, shr(r, x))))
                        r := or(r, lt(0x1, shr(r, x)))
                    }
                }
            }