ETH Price: $1,972.78 (+0.54%)
 

Overview

Max Total Supply

230,267,755.627432321682880773 NUSD

Holders

459 ( 0.218%)

Transfers

-
310 ( -23.46%)

Market

Price

$1.00 @ 0.000506 ETH (+0.03%)

Onchain Market Cap

$230,050,843.40

Circulating Supply Market Cap

$230,152,774.00

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Neutrl is a market-neutral synthetic dollar designed to unlock untapped yield opportunities in OTC and altcoin markets.

Market

Volume (24H):$242,019.00
Market Capitalization:$230,152,774.00
Circulating Supply:230,267,756.00 NUSD
Market Data Source: Coinmarketcap

# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
NUSD

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {SingleAdminAccessControl} from "src/utils/SingleAdminAccessControl.sol";

/// @title NUSD
contract NUSD is ERC20, ERC20Permit, SingleAdminAccessControl {
    /*//////////////////////////////////////////////////////////////
                             ERRORS
    //////////////////////////////////////////////////////////////*/

    error RenounceRoleNotAllowed();
    error UserDenylisted();
    /*//////////////////////////////////////////////////////////////
                             EVENTS
    //////////////////////////////////////////////////////////////*/

    event AddedToDenylist(address indexed _address);
    event RemovedFromDenylist(address indexed _address);

    /*//////////////////////////////////////////////////////////////
                             STORAGE
    //////////////////////////////////////////////////////////////*/

    bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
    bytes32 public constant REDEEMER_ROLE = keccak256("REDEEMER_ROLE");

    /// @notice The role that is allowed to denylist and un-denylist addresses
    bytes32 public constant DENYLIST_MANAGER_ROLE = keccak256("DENYLIST_MANAGER_ROLE");

    /// @notice The mapping of addresses that are denylisted
    mapping(address => bool) public isDenylisted;

    /*//////////////////////////////////////////////////////////////
                             INITIALIZATION
    //////////////////////////////////////////////////////////////*/
    constructor(address _admin) ERC20("Neutrl USD", "NUSD") ERC20Permit("Neutrl USD") {
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
    }

    /*//////////////////////////////////////////////////////////////
                             ADMIN FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Denylists an address
    /// @param _address The address to denylist
    function addToDenylist(address _address) external onlyRole(DENYLIST_MANAGER_ROLE) {
        isDenylisted[_address] = true;
        emit AddedToDenylist(_address);
    }

    /// @notice Removes an address from the denylist
    /// @param _address The address to remove from the denylist
    function removeFromDenylist(address _address) external onlyRole(DENYLIST_MANAGER_ROLE) {
        isDenylisted[_address] = false;
        emit RemovedFromDenylist(_address);
    }

    /*//////////////////////////////////////////////////////////////
                            AUTHORIZED FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Mints NUSD tokens to a specified address
    /// @param _to Address to receive the minted tokens
    /// @param _amount Amount of tokens to mint
    function mint(address _to, uint256 _amount) external onlyRole(MINTER_ROLE) {
        _mint(_to, _amount);
    }

    /// @notice Burns NUSD tokens from a specified address
    /// @param _from Address to burn the tokens from
    /// @param _amount Amount of tokens to burn
    function burn(address _from, uint256 _amount) external onlyRole(REDEEMER_ROLE) {
        _burn(_from, _amount);
    }

    /*//////////////////////////////////////////////////////////////
                            USER FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Burns NUSD tokens from the caller's address
    /// @param _amount Amount of tokens to burn
    /// @dev Any token holder can burn their own tokens
    function burn(uint256 _amount) external {
        _burn(msg.sender, _amount);
    }

    /// @notice Renounce role is not allowed
    function renounceRole(bytes32, address) public virtual override {
        revert RenounceRoleNotAllowed();
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @notice Prevents denylisted addresses from transferring tokens
    function _update(address from, address to, uint256 value) internal override {
        if ((isDenylisted[from] && to != address(0)) || isDenylisted[to] || isDenylisted[msg.sender]) {
            revert UserDenylisted();
        }
        super._update(from, to, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/interfaces/IERC5313.sol";

/**
 * @title SingleAdminAccessControl
 * @notice SingleAdminAccessControl is a contract that provides a single admin role
 * @notice This contract is a simplified alternative to OpenZeppelin's AccessControlDefaultAdminRules
 */
abstract contract SingleAdminAccessControl is IERC5313, AccessControl {
    error InvalidAdminChange();
    error NotPendingAdmin();

    event AdminTransferred(address indexed oldAdmin, address indexed newAdmin);
    event AdminTransferRequested(address indexed oldAdmin, address indexed newAdmin);

    address private _currentDefaultAdmin;
    address private _pendingDefaultAdmin;

    modifier notAdmin(bytes32 role) {
        if (role == DEFAULT_ADMIN_ROLE) revert InvalidAdminChange();
        _;
    }

    /// @notice Transfer the admin role to a new address
    /// @notice This can ONLY be executed by the current admin
    /// @param newAdmin address
    function transferAdmin(address newAdmin) external onlyRole(DEFAULT_ADMIN_ROLE) {
        if (newAdmin == address(0) || newAdmin == _msgSender()) {
            revert InvalidAdminChange();
        }
        _pendingDefaultAdmin = newAdmin;
        emit AdminTransferRequested(_currentDefaultAdmin, newAdmin);
    }

    function acceptAdmin() external {
        if (_msgSender() != _pendingDefaultAdmin) revert NotPendingAdmin();
        _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
    }

    /// @notice grant a role
    /// @notice can only be executed by the current single admin
    /// @notice admin role cannot be granted externally
    /// @param role bytes32
    /// @param account address
    function grantRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
        _grantRole(role, account);
    }

    /// @notice revoke a role
    /// @notice can only be executed by the current admin
    /// @notice admin role cannot be revoked
    /// @param role bytes32
    /// @param account address
    function revokeRole(bytes32 role, address account) public override onlyRole(DEFAULT_ADMIN_ROLE) notAdmin(role) {
        _revokeRole(role, account);
    }

    /// @notice renounce the role of _msgSender()
    /// @notice admin role cannot be renounced
    /// @param role bytes32
    /// @param account address
    function renounceRole(bytes32 role, address account) public virtual override notAdmin(role) {
        super.renounceRole(role, account);
    }

    /**
     * @dev See {IERC5313-owner}.
     */
    function owner() external view virtual returns (address) {
        return _currentDefaultAdmin;
    }

    /**
     * @notice no way to change admin without removing old admin first
     */
    function _grantRole(bytes32 role, address account) internal override returns (bool) {
        if (role == DEFAULT_ADMIN_ROLE) {
            emit AdminTransferred(_currentDefaultAdmin, account);
            _revokeRole(DEFAULT_ADMIN_ROLE, _currentDefaultAdmin);
            _currentDefaultAdmin = account;
            delete _pendingDefaultAdmin;
        }
        return super._grantRole(role, account);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 14 of 26 : IERC5313.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5313.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface for the Light Contract Ownership Standard.
 *
 * A standardized minimal interface required to identify an account that controls a contract
 */
interface IERC5313 {
    /**
     * @dev Gets the address of the owner.
     */
    function owner() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 17 of 26 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 23 of 26 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 24 of 26 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/src/=lib/openzeppelin-contracts/contracts/",
    "test/=test/",
    "@layerzerolabs/oft-evm/=lib/devtools/packages/oft-evm/",
    "@layerzerolabs/oapp-evm/=lib/devtools/packages/oapp-evm/",
    "@layerzerolabs/lz-evm-protocol-v2/=lib/LayerZero-v2/packages/layerzero-v2/evm/protocol/",
    "@layerzerolabs/lz-evm-messagelib-v2/=lib/LayerZero-v2/packages/layerzero-v2/evm/messagelib/",
    "solidity-bytes-utils/=lib/solidity-bytes-utils/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "LayerZero-v2/=lib/LayerZero-v2/",
    "createx-forge/=lib/createx-forge/",
    "devtools/=lib/devtools/packages/toolbox-foundry/src/",
    "ds-test/=lib/createx-forge/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_admin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidAdminChange","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"NotPendingAdmin","type":"error"},{"inputs":[],"name":"RenounceRoleNotAllowed","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"UserDenylisted","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"AddedToDenylist","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminTransferRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"RemovedFromDenylist","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DENYLIST_MANAGER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REDEEMER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"addToDenylist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isDenylisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"removeFromDenylist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"address","name":"","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"transferAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

610160604052346100725761001a610015610137565b610259565b610022610077565b612c19610dc2823960805181611dbb015260a05181611df2015260c05181611d82015260e0518161244c0152610100518161247101526101205181611f0f01526101405181611f4f0152612c1990f35b61007d565b60405190565b5f80fd5b601f801991011690565b634e487b7160e01b5f52604160045260245ffd5b906100a990610081565b810190811060018060401b038211176100c157604052565b61008b565b906100d96100d2610077565b928361009f565b565b5f80fd5b60018060a01b031690565b6100f3906100df565b90565b6100ff816100ea565b0361010657565b5f80fd5b90505190610117826100f6565b565b906020828203126101325761012f915f0161010a565b90565b6100db565b6101556139db8038038061014a816100c6565b928339810190610119565b90565b60018060401b03811161017457610170602091610081565b0190565b61008b565b9061018b61018683610158565b6100c6565b918252565b5f7f4e657574726c2055534400000000000000000000000000000000000000000000910152565b6101c1600a610179565b906101ce60208301610190565b565b6101d86101b7565b90565b5f7f4e55534400000000000000000000000000000000000000000000000000000000910152565b61020c6004610179565b90610219602083016101db565b565b610223610202565b90565b90565b90565b5f1b90565b61024561024061024a92610226565b61022c565b610229565b90565b6102565f610231565b90565b61028b9061027e6102686101d0565b6102706101d0565b61027861021b565b9161028e565b61028661024d565b610786565b50565b90610299929161029b565b565b906102a692916102a8565b565b906102b392916102b5565b565b906102c092916102c2565b565b906102cd929161031a565b565b5f7f3100000000000000000000000000000000000000000000000000000000000000910152565b6103006001610179565b9061030d602083016102cf565b565b6103176102f6565b90565b9061032e929161032861030f565b90610330565b565b9061033c939291610385565b565b90565b90565b60200190565b5190565b90565b61036561036061036a926100df565b61034e565b6100df565b90565b61037690610351565b90565b6103829061036d565b90565b6103966103e6946103cb939461041a565b6103aa816103a4600561033e565b906108a2565b610120526103c2836103bc600661033e565b906108a2565b61014052610341565b6103dd6103d78261034a565b91610344565b2060e052610341565b6103f86103f28261034a565b91610344565b20610100524660a0526104096109b4565b60805261041530610379565b60c052565b9061042491610426565b565b9061043091610686565b565b5190565b634e487b7160e01b5f52602260045260245ffd5b906001600283049216801561046a575b602083101461046557565b610436565b91607f169161045a565b5f5260205f2090565b601f602091010490565b1b90565b919060086104a69102916104a05f1984610487565b92610487565b9181191691161790565b90565b6104c76104c26104cc926104b0565b61034e565b6104b0565b90565b90565b91906104e86104e36104f0936104b3565b6104cf565b90835461048b565b9055565b5f90565b61050a916105046104f4565b916104d2565b565b5b818110610518575050565b806105255f6001936104f8565b0161050d565b9190601f811161053b575b505050565b61054761056c93610474565b9060206105538461047d565b83019310610574575b6105659061047d565b019061050c565b5f8080610536565b91506105658192905061055c565b1c90565b90610596905f1990600802610582565b191690565b816105a591610586565b906002021790565b906105b781610432565b9060018060401b038211610675576105d9826105d3855461044a565b8561052b565b602090601f831160011461060d579180916105fc935f92610601575b505061059b565b90555b565b90915001515f806105f5565b601f1983169161061c85610474565b925f5b81811061065d57509160029391856001969410610643575b505050020190556105ff565b610653910151601f841690610586565b90555f8080610637565b9193602060018192878701518155019501920161061f565b61008b565b90610684916105ad565b565b9061069561069c92600361067a565b600461067a565b565b5f90565b5f1c90565b60018060a01b031690565b6106be6106c3916106a2565b6106a7565b90565b6106d090546106b2565b90565b6106dc9061036d565b90565b5f0190565b906106f560018060a01b039161022c565b9181191691161790565b90565b9061071761071261071e926106d3565b6106ff565b82546106e4565b9055565b9190600861074291029161073c60018060a01b0384610487565b92610487565b9181191691161790565b919061076261075d61076a936106d3565b6106ff565b908354610722565b9055565b5f90565b6107849161077e61076e565b9161074c565b565b906107b99161079361069e565b50806107ae6107a86107a361024d565b610229565b91610229565b146107bc575b610b3d565b90565b6107c660096106c6565b826107fa6107f47ff8ccb027dfcd135e000e9d45e6cc2d662578a8825d4c45b5e32e0adf67e79ec6936106d3565b916106d3565b91610803610077565b8061080d816106df565b0390a361082b61081b61024d565b61082560096106c6565b90610a9b565b50610837826009610702565b6108425f600a610772565b6107b4565b5f90565b90565b61086261085d6108679261084b565b61034e565b6104b0565b90565b90565b61088161087c6108869261086a565b61022c565b610229565b90565b61089360ff61086d565b90565b61089f90610229565b90565b906108ab610847565b506108bd6108b883610341565b61034a565b6108d06108ca602061084e565b916104b0565b105f146108e457506108e190610cd9565b90565b5f6108f26108f89392610be9565b0161067a565b610908610903610889565b610896565b90565b5f90565b7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f90565b61093d9051610229565b90565b61094990610229565b9052565b610956906104b0565b9052565b610963906100ea565b9052565b909594926109b2946109a16109ab9261099760809661098d60a088019c5f890190610940565b6020870190610940565b6040850190610940565b606083019061094d565b019061095a565b565b6109bc61090b565b506109c561090f565b610a0f6109d260e0610933565b91610a006109e1610100610933565b466109eb30610379565b916109f4610077565b96879560208701610967565b6020820181038252038261009f565b610a21610a1b8261034a565b91610344565b2090565b90610a2f90610896565b5f5260205260405f2090565b90610a45906106d3565b5f5260205260405f2090565b90610a5d60ff9161022c565b9181191691161790565b151590565b610a7590610a67565b90565b90565b90610a90610a8b610a9792610a6c565b610a78565b8254610a51565b9055565b610aa361069e565b50610aaf818390610d8a565b5f14610b3757610ad65f610ad15f610ac960088690610a25565b018590610a3b565b610a7b565b90610adf610db4565b90610b1c610b16610b107ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b95610896565b926106d3565b926106d3565b92610b25610077565b80610b2f816106df565b0390a4600190565b50505f90565b610b4561069e565b50610b5a610b54828490610d8a565b15610a67565b5f14610be357610b826001610b7d5f610b7560088690610a25565b018590610a3b565b610a7b565b90610b8b610db4565b90610bc8610bc2610bbc7f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d95610896565b926106d3565b926106d3565b92610bd1610077565b80610bdb816106df565b0390a4600190565b50505f90565b90565b90565b610c03610bfe610c0892610bec565b61034e565b6104b0565b90565b60209181520190565b90825f9392825e0152565b610c3e610c47602093610c4c93610c3581610432565b93848093610c0b565b95869101610c14565b610081565b0190565b610c659160208201915f818403910152610c1f565b90565b610c82610c7d610c778361034a565b92610344565b610933565b9060208110610c90575b5090565b610ca2905f1990602003600802610487565b165f610c8c565b610cb5610cba916106a2565b6104b3565b90565b610cd1610ccc610cd6926104b0565b61022c565b610229565b90565b610ce1610847565b50610ceb81610341565b90610cf58261034a565b610d08610d02601f610bef565b916104b0565b11610d3d5750610d3581610d2f610d29610d24610d3a95610c68565b610ca9565b9161034a565b17610cbd565b610896565b90565b610d5f90610d49610077565b91829163305a27a960e01b835260048301610c50565b0390fd5b60ff1690565b610d75610d7a916106a2565b610d63565b90565b610d879054610d69565b90565b610db1915f610da6610dac93610d9e61069e565b506008610a25565b01610a3b565b610d7d565b90565b610dbc61076e565b50339056fe60806040526004361015610013575b610ede565b61001d5f3561021c565b806301ffc9a71461021757806302c52db01461021257806306fdde031461020d578063095ea7b3146102085780630e18b6811461020357806318160ddd146101fe578063228b547e146101f957806323b872dd146101f4578063248a9ca3146101ef5780632f2ff15d146101ea578063313ce567146101e55780633644e515146101e057806336568abe146101db57806340c10f19146101d657806342966c68146101d157806370a08231146101cc57806375829def146101c75780637ecebe00146101c25780637fa46ab4146101bd57806384b0196e146101b85780638da5cb5b146101b357806391d14854146101ae57806395d89b41146101a95780639dc29fac146101a4578063a217fddf1461019f578063a9059cbb1461019a578063aa05aa5f14610195578063d505accf14610190578063d53913931461018b578063d547741f14610186578063dd62ed3e146101815763e877a5260361000e57610ea9565b610ddd565b610d7c565b610d47565b610cde565b610c16565b610bb1565b610b7c565b610b0d565b610ad8565b610aa2565b610a6d565b610a1c565b6108c8565b610864565b610831565b6107fc565b6107c9565b610777565b61075c565b610727565b6106f2565b610696565b610634565b610598565b61052b565b6104f6565b6104a1565b61046b565b6103e3565b610336565b6102a4565b60e01c90565b60405190565b5f80fd5b5f80fd5b63ffffffff60e01b1690565b61024581610230565b0361024c57565b5f80fd5b9050359061025d8261023c565b565b9060208282031261027857610275915f01610250565b90565b61022c565b151590565b61028b9061027d565b9052565b91906102a2905f60208501940190610282565b565b346102d4576102d06102bf6102ba36600461025f565b610ee6565b6102c7610222565b9182918261028f565b0390f35b610228565b60018060a01b031690565b6102ed906102d9565b90565b6102f9816102e4565b0361030057565b5f80fd5b90503590610311826102f0565b565b9060208282031261032c57610329915f01610304565b90565b61022c565b5f0190565b346103645761034e610349366004610313565b610fdd565b610356610222565b8061036081610331565b0390f35b610228565b5f91031261037357565b61022c565b5190565b60209181520190565b90825f9392825e0152565b601f801991011690565b6103b96103c26020936103c7936103b081610378565b9384809361037c565b95869101610385565b610390565b0190565b6103e09160208201915f81840391015261039a565b90565b34610413576103f3366004610369565b61040f6103fe611141565b610406610222565b918291826103cb565b0390f35b610228565b90565b61042481610418565b0361042b57565b5f80fd5b9050359061043c8261041b565b565b9190604083820312610466578061045a610463925f8601610304565b9360200161042f565b90565b61022c565b3461049c5761049861048761048136600461043e565b90611157565b61048f610222565b9182918261028f565b0390f35b610228565b346104cf576104b1366004610369565b6104b96111aa565b6104c1610222565b806104cb81610331565b0390f35b610228565b6104dd90610418565b9052565b91906104f4905f602085019401906104d4565b565b3461052657610506366004610369565b610522610511611232565b610519610222565b918291826104e1565b0390f35b610228565b346105595761054361053e366004610313565b6112bb565b61054b610222565b8061055581610331565b0390f35b610228565b909160608284031261059357610590610579845f8501610304565b936105878160208601610304565b9360400161042f565b90565b61022c565b346105c9576105c56105b46105ae36600461055e565b916112c6565b6105bc610222565b9182918261028f565b0390f35b610228565b90565b6105da816105ce565b036105e157565b5f80fd5b905035906105f2826105d1565b565b9060208282031261060d5761060a915f016105e5565b90565b61022c565b61061b906105ce565b9052565b9190610632905f60208501940190610612565b565b346106645761066061064f61064a3660046105f4565b61133f565b610657610222565b9182918261061f565b0390f35b610228565b9190604083820312610691578061068561068e925f86016105e5565b93602001610304565b90565b61022c565b346106c5576106af6106a9366004610669565b906113d1565b6106b7610222565b806106c181610331565b0390f35b610228565b60ff1690565b6106d9906106ca565b9052565b91906106f0905f602085019401906106d0565b565b3461072257610702366004610369565b61071e61070d611400565b610715610222565b918291826106dd565b0390f35b610228565b3461075757610737366004610369565b610753610742611416565b61074a610222565b9182918261061f565b0390f35b610228565b346107725761076c366004610669565b9061142a565b610228565b346107a65761079061078a36600461043e565b9061146e565b610798610222565b806107a281610331565b0390f35b610228565b906020828203126107c4576107c1915f0161042f565b90565b61022c565b346107f7576107e16107dc3660046107ab565b61147a565b6107e9610222565b806107f381610331565b0390f35b610228565b3461082c57610828610817610812366004610313565b61149c565b61081f610222565b918291826104e1565b0390f35b610228565b3461085f57610849610844366004610313565b611600565b610851610222565b8061085b81610331565b0390f35b610228565b346108945761089061087f61087a366004610313565b61160b565b610887610222565b918291826104e1565b0390f35b610228565b7f44ac9762eec3a11893fefb11d028bb3102560094137c3ed4518712475b2577cc90565b6108c5610899565b90565b346108f8576108d8366004610369565b6108f46108e36108bd565b6108eb610222565b9182918261061f565b0390f35b610228565b60ff60f81b1690565b61090f906108fd565b9052565b61091c906102e4565b9052565b5190565b60209181520190565b60200190565b61093c90610418565b9052565b9061094d81602093610933565b0190565b60200190565b9061097461096e61096784610920565b8093610924565b9261092d565b905f5b8181106109845750505090565b90919261099d6109976001928651610940565b94610951565b9101919091610977565b939591946109f86109ed610a0c956109df610a0295610a199c9a6109d260e08c01925f8d0190610906565b8a820360208c015261039a565b9088820360408a015261039a565b9760608701906104d4565b6080850190610913565b60a0830190610612565b60c0818403910152610957565b90565b34610a5357610a2c366004610369565b610a4f610a376116d2565b93610a46979597939193610222565b978897886109a7565b0390f35b610228565b9190610a6b905f60208501940190610913565b565b34610a9d57610a7d366004610369565b610a99610a8861175c565b610a90610222565b91829182610a58565b0390f35b610228565b34610ad357610acf610abe610ab8366004610669565b90611793565b610ac6610222565b9182918261028f565b0390f35b610228565b34610b0857610ae8366004610369565b610b04610af36117bd565b610afb610222565b918291826103cb565b0390f35b610228565b34610b3c57610b26610b2036600461043e565b906117fb565b610b2e610222565b80610b3881610331565b0390f35b610228565b90565b5f1b90565b610b5d610b58610b6292610b41565b610b44565b6105ce565b90565b610b6e5f610b49565b90565b610b79610b65565b90565b34610bac57610b8c366004610369565b610ba8610b97610b71565b610b9f610222565b9182918261061f565b0390f35b610228565b34610be257610bde610bcd610bc736600461043e565b90611807565b610bd5610222565b9182918261028f565b0390f35b610228565b7fd15a633a037a8cb1e45b365d4ebd232aae2a8d891c9de0523b8e2fe68362d06690565b610c13610be7565b90565b34610c4657610c26366004610369565b610c42610c31610c0b565b610c39610222565b9182918261061f565b0390f35b610228565b610c54816106ca565b03610c5b57565b5f80fd5b90503590610c6c82610c4b565b565b60e081830312610cd957610c84825f8301610304565b92610c928360208401610304565b92610ca0816040850161042f565b92610cae826060830161042f565b92610cd6610cbf8460808501610c5f565b93610ccd8160a086016105e5565b9360c0016105e5565b90565b61022c565b34610d1357610cfd610cf1366004610c6e565b959490949391936118d5565b610d05610222565b80610d0f81610331565b0390f35b610228565b7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a690565b610d44610d18565b90565b34610d7757610d57366004610369565b610d73610d62610d3c565b610d6a610222565b9182918261061f565b0390f35b610228565b34610dab57610d95610d8f366004610669565b90611a39565b610d9d610222565b80610da781610331565b0390f35b610228565b9190604083820312610dd85780610dcc610dd5925f8601610304565b93602001610304565b90565b61022c565b34610e0e57610e0a610df9610df3366004610db0565b90611a5b565b610e01610222565b918291826104e1565b0390f35b610228565b90565b610e2a610e25610e2f926102d9565b610e13565b6102d9565b90565b610e3b90610e16565b90565b610e4790610e32565b90565b90610e5490610e3e565b5f5260205260405f2090565b1c90565b60ff1690565b610e7a906008610e7f9302610e60565b610e64565b90565b90610e8d9154610e6a565b90565b610ea690610ea1600b915f92610e4a565b610e82565b90565b34610ed957610ed5610ec4610ebf366004610313565b610e90565b610ecc610222565b9182918261028f565b0390f35b610228565b5f80fd5b5f90565b610eee610ee2565b5080610f09610f03637965db0b60e01b610230565b91610230565b14908115610f16575b5090565b610f209150611a83565b5f610f12565b610f3f90610f3a610f35610be7565b611aa9565b610f86565b565b90610f4d60ff91610b44565b9181191691161790565b610f609061027d565b90565b90565b90610f7b610f76610f8292610f57565b610f63565b8254610f41565b9055565b610f9b5f610f96600b8490610e4a565b610f66565b610fc57f29e32a16a9d465ee92796d9fc7e93d2a9ab78cdc803298df7ed84b52d19cd42f91610e3e565b90610fce610222565b80610fd881610331565b0390a2565b610fe690610f26565b565b606090565b634e487b7160e01b5f52602260045260245ffd5b9060016002830492168015611021575b602083101461101c57565b610fed565b91607f1691611011565b60209181520190565b5f5260205f2090565b905f929180549061105761105083611001565b809461102b565b916001811690815f146110ae5750600114611072575b505050565b61107f9192939450611034565b915f925b81841061109657505001905f808061106d565b60018160209295939554848601520191019290611083565b92949550505060ff19168252151560200201905f808061106d565b906110d39161103d565b90565b634e487b7160e01b5f52604160045260245ffd5b906110f490610390565b810190811067ffffffffffffffff82111761110e57604052565b6110d6565b9061113361112c92611123610222565b938480926110c9565b03836110ea565b565b61113e90611113565b90565b611149610fe8565b506111546003611135565b90565b61117491611163610ee2565b5061116c611abd565b919091611aca565b600190565b5f1c90565b60018060a01b031690565b61119561119a91611179565b61117e565b90565b6111a79054611189565b90565b6111b2611abd565b6111cd6111c76111c2600a61119d565b6102e4565b916102e4565b036111ee576111eb6111dd610b65565b6111e5611abd565b90611b3e565b50565b5f63058d9a1b60e01b81528061120660048201610331565b0390fd5b5f90565b90565b61121d61122291611179565b61120e565b90565b61122f9054611211565b90565b61123a61120a565b506112456002611225565b90565b6112619061125c611257610be7565b611aa9565b611263565b565b6112796001611274600b8490610e4a565b610f66565b6112a37f8d6233ac6005c4f3eaa99b3aebdbe7ad15476dd961858142c4080952392f979d91610e3e565b906112ac610222565b806112b681610331565b0390a2565b6112c490611248565b565b916112f0926112d3610ee2565b506112e86112df611abd565b82908491611c3f565b919091611ccb565b600190565b5f90565b611302906105ce565b90565b9061130f906112f9565b5f5260205260405f2090565b90565b61132a61132f91611179565b61131b565b90565b61133c905461131e565b90565b600161135861135e926113506112f5565b506008611305565b01611332565b90565b9061137b91611376611371610b65565b611aa9565b61137d565b565b908161139861139261138d610b65565b6105ce565b916105ce565b146113a8576113a6916113c4565b565b5f63318bd07d60e11b8152806113c060048201610331565b0390fd5b906113ce91611b3e565b50565b906113db91611361565b565b5f90565b90565b6113f86113f36113fd926113e1565b610e13565b6106ca565b90565b6114086113dd565b5061141360126113e4565b90565b61141e6112f5565b50611427611d68565b90565b5f6314ec366d60e21b81528061144260048201610331565b0390fd5b906114609161145b611456610d18565b611aa9565b611462565b565b9061146c91611e22565b565b9061147891611446565b565b6114849033611e80565b565b9061149090610e3e565b5f5260205260405f2090565b6114b26114b7916114ab61120a565b505f611486565b611225565b90565b6114d3906114ce6114c9610b65565b611aa9565b61153b565b565b6114e96114e46114ee92610b41565b610e13565b6102d9565b90565b6114fa906114d5565b90565b9061150e60018060a01b0391610b44565b9181191691161790565b90565b9061153061152b61153792610e3e565b611518565b82546114fd565b9055565b8061155661155061154b5f6114f1565b6102e4565b916102e4565b1480156115df575b6115c35761156d81600a61151b565b611577600961119d565b906115ab6115a57fefdcbba819467e00b0262c12892dda980bac68580b72178e57a162368b80876693610e3e565b91610e3e565b916115b4610222565b806115be81610331565b0390a3565b5f63318bd07d60e11b8152806115db60048201610331565b0390fd5b50806115fa6115f46115ef611abd565b6102e4565b916102e4565b1461155e565b611609906114ba565b565b61161d9061161761120a565b50611edf565b90565b5f90565b5f90565b606090565b61163690610e32565b90565b61164d61164861165292610b41565b610e13565b610418565b90565b90611668611661610222565b92836110ea565b565b67ffffffffffffffff81116116825760208091020190565b6110d6565b906116996116948361166a565b611655565b918252565b369037565b906116c86116b083611687565b926020806116be869361166a565b920191039061169e565b565b600f60f81b90565b6116da611620565b506116e3610fe8565b506116ec610fe8565b506116f561120a565b506116fe611624565b506117076112f5565b50611710611628565b50611719611f01565b90611722611f41565b90469061172e3061162d565b906117385f610b49565b9061174a6117455f611639565b6116a3565b906117536116ca565b96959493929190565b611764611624565b5061176f600961119d565b90565b61177e61178391611179565b610e64565b90565b6117909054611772565b90565b6117ba915f6117af6117b5936117a7610ee2565b506008611305565b01610e4a565b611786565b90565b6117c5610fe8565b506117d06004611135565b90565b906117ed916117e86117e3610899565b611aa9565b6117ef565b565b906117f991611e80565b565b90611805916117d3565b565b61182491611813610ee2565b5061181c611abd565b919091611ccb565b600190565b7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c990565b919461189561189f9298979561188b60a0966118816118a69a61187760c08a019e5f8b0190610612565b6020890190610913565b6040870190610913565b60608501906104d4565b60808301906104d4565b01906104d4565b565b60200190565b5190565b9160206118d39294936118cc60408201965f830190610913565b0190610913565b565b9695919392949094426118f06118ea83610418565b91610418565b116119aa579061195961196294939261194161190a611829565b6119328c80948c9161191c8d91611fe5565b9192611926610222565b9788966020880161184d565b602082018103825203826110ea565b61195361194d826118ae565b916118a8565b20612018565b92909192612035565b8061197561196f876102e4565b916102e4565b0361198a57506119889293919091611aca565b565b84906119a65f9283926325c0072360e11b8452600484016118b2565b0390fd5b6119c5905f91829163313c898160e11b8352600483016104e1565b0390fd5b906119e3916119de6119d9610b65565b611aa9565b6119e5565b565b9081611a006119fa6119f5610b65565b6105ce565b916105ce565b14611a1057611a0e91611a2c565b565b5f63318bd07d60e11b815280611a2860048201610331565b0390fd5b90611a369161205c565b50565b90611a43916119c9565b565b90611a4f90610e3e565b5f5260205260405f2090565b611a8091611a76611a7b92611a6e61120a565b506001611a45565b611486565b611225565b90565b611a8b610ee2565b50611aa5611a9f6301ffc9a760e01b610230565b91610230565b1490565b611abb90611ab5611abd565b90612121565b565b611ac5611624565b503390565b91611ad8929160019261215c565b565b1b90565b91906008611afe910291611af860018060a01b0384611ada565b92611ada565b9181191691161790565b9190611b1e611b19611b2693610e3e565b611518565b908354611ade565b9055565b611b3c91611b36611624565b91611b08565b565b90611b7191611b4b610ee2565b5080611b66611b60611b5b610b65565b6105ce565b916105ce565b14611b74575b61226b565b90565b611b7e600961119d565b82611bb2611bac7ff8ccb027dfcd135e000e9d45e6cc2d662578a8825d4c45b5e32e0adf67e79ec693610e3e565b91610e3e565b91611bbb610222565b80611bc581610331565b0390a3611be3611bd3610b65565b611bdd600961119d565b9061205c565b50611bef82600961151b565b611bfa5f600a611b2a565b611b6c565b604090611c28611c2f9496959396611c1e60608401985f850190610913565b60208301906104d4565b01906104d4565b565b90611c3c9103610418565b90565b929192611c4d818390611a5b565b9081611c62611c5c5f19610418565b91610418565b10611c6f575b5050509050565b81611c82611c7c87610418565b91610418565b10611ca857611c9f9394611c97919392611c31565b905f9261215c565b805f8080611c68565b50611cc7849291925f938493637dc7a0d960e11b855260048501611bff565b0390fd5b9182611ce7611ce1611cdc5f6114f1565b6102e4565b916102e4565b14611d415781611d07611d01611cfc5f6114f1565b6102e4565b916102e4565b14611d1a57611d1892919091612317565b565b611d3d611d265f6114f1565b5f91829163ec442f0560e01b835260048301610a58565b0390fd5b611d64611d4d5f6114f1565b5f918291634b637e8f60e11b835260048301610a58565b0390fd5b611d706112f5565b50611d7a3061162d565b611dac611da67f00000000000000000000000000000000000000000000000000000000000000006102e4565b916102e4565b1480611de8575b5f14611ddd577f000000000000000000000000000000000000000000000000000000000000000090565b611de5612436565b90565b5046611e1c611e167f0000000000000000000000000000000000000000000000000000000000000000610418565b91610418565b14611db3565b80611e3d611e37611e325f6114f1565b6102e4565b916102e4565b14611e5957611e5791611e4f5f6114f1565b919091612317565b565b611e7c611e655f6114f1565b5f91829163ec442f0560e01b835260048301610a58565b0390fd5b9081611e9c611e96611e915f6114f1565b6102e4565b916102e4565b14611eb857611eb69190611eaf5f6114f1565b9091612317565b565b611edb611ec45f6114f1565b5f918291634b637e8f60e11b835260048301610a58565b0390fd5b611ef6611efb91611eee61120a565b506007611486565b611225565b90565b90565b611f09610fe8565b50611f3e7f0000000000000000000000000000000000000000000000000000000000000000611f386005611efe565b906125d0565b90565b611f49610fe8565b50611f7e7f0000000000000000000000000000000000000000000000000000000000000000611f786006611efe565b906125d0565b90565b6001611f8d9101610418565b90565b90611f9c5f1991610b44565b9181191691161790565b611fba611fb5611fbf92610418565b610e13565b610418565b90565b90565b90611fda611fd5611fe192611fa6565b611fc2565b8254611f90565b9055565b611ff990611ff161120a565b506007611486565b61201561200582611225565b9161200f83611f81565b90611fc5565b90565b612032906120246112f5565b5061202d611d68565b61261e565b90565b926120509261205994612046611624565b50929091926126e4565b9092919261280f565b90565b612064610ee2565b50612070818390611793565b5f146120f8576120975f6120925f61208a60088690611305565b018590610e4a565b610f66565b906120a0611abd565b906120dd6120d76120d17ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b956112f9565b92610e3e565b92610e3e565b926120e6610222565b806120f081610331565b0390a4600190565b50505f90565b91602061211f92949361211860408201965f830190610913565b0190610612565b565b90612136612130838390611793565b1561027d565b61213e575050565b6121585f92839263e2517d3f60e01b8452600484016120fe565b0390fd5b90928161217961217361216e5f6114f1565b6102e4565b916102e4565b14612244578361219961219361218e5f6114f1565b6102e4565b916102e4565b1461221d576121bd836121b86121b160018690611a45565b8790611486565b611fc5565b6121c7575b505050565b9190916122126122006121fa7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92593610e3e565b93610e3e565b93612209610222565b918291826104e1565b0390a35f80806121c2565b6122406122295f6114f1565b5f918291634a1406b160e11b835260048301610a58565b0390fd5b6122676122505f6114f1565b5f91829163e602df0560e01b835260048301610a58565b0390fd5b612273610ee2565b50612288612282828490611793565b1561027d565b5f14612311576122b060016122ab5f6122a360088690611305565b018590610e4a565b610f66565b906122b9611abd565b906122f66122f06122ea7f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d956112f9565b92610e3e565b92610e3e565b926122ff610222565b8061230981610331565b0390a4600190565b50505f90565b9161232c612327600b8590610e4a565b611786565b806123a2575b8015612388575b801561236e575b6123525761235092919091612927565b565b5f638373f64760e01b81528061236a60048201610331565b0390fd5b5061238361237e600b3390610e4a565b611786565b612340565b5061239d612398600b8490610e4a565b611786565b612339565b50816123be6123b86123b35f6114f1565b6102e4565b916102e4565b1415612332565b7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f90565b909594926124349461242361242d9261241960809661240f60a088019c5f890190610612565b6020870190610612565b6040850190610612565b60608301906104d4565b0190610913565b565b61243e6112f5565b506124476123c5565b6124be7f0000000000000000000000000000000000000000000000000000000000000000916124af7f00000000000000000000000000000000000000000000000000000000000000004661249a3061162d565b916124a3610222565b968795602087016123e9565b602082018103825203826110ea565b6124d06124ca826118ae565b916118a8565b2090565b90565b6124eb6124e66124f0926124d4565b610b44565b6105ce565b90565b6124fd60ff6124d7565b90565b5f5260205f2090565b905f929180549061252361251c83611001565b809461102b565b916001811690815f1461257a575060011461253e575b505050565b61254b9192939450612500565b915f925b81841061256257505001905f8080612539565b6001816020929593955484860152019101929061254f565b92949550505060ff19168252151560200201905f8080612539565b9061259f91612509565b90565b906125c26125bb926125b2610222565b93848092612595565b03836110ea565b565b6125cd906125a2565b90565b906125d9610fe8565b506125e3826112f9565b6125fc6125f66125f16124f3565b6105ce565b916105ce565b14155f14612611575061260e90612b1b565b90565b61261b91506125c4565b90565b6042916126296112f5565b50604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b5f90565b61266f61267491611179565b611fa6565b90565b90565b61268e61268961269392612677565b610e13565b610418565b90565b6126cb6126d2946126c16060949897956126b7608086019a5f870190610612565b60208501906106d0565b6040830190610612565b0190610612565b565b6126dc610222565b3d5f823e3d90fd5b9392936126ef611624565b506126f861265f565b506127016112f5565b5061270b85612663565b61273d6127377f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a061267a565b91610418565b116127ca5790612760602094955f94939293612757610222565b94859485612696565b838052039060015afa156127c5576127785f51610b44565b8061279361278d6127885f6114f1565b6102e4565b916102e4565b146127a9575f916127a35f610b49565b91929190565b506127b35f6114f1565b6001916127bf5f610b49565b91929190565b6126d4565b5050506127d65f6114f1565b9060039291929190565b634e487b7160e01b5f52602160045260245ffd5b600411156127fe57565b6127e0565b9061280d826127f4565b565b8061282261281c5f612803565b91612803565b145f1461282d575050565b8061284161283b6001612803565b91612803565b145f14612864575f63f645eedf60e01b81528061286060048201610331565b0390fd5b806128786128726002612803565b91612803565b145f146128a6576128a261288b83612663565b5f91829163fce698f760e01b8352600483016104e1565b0390fd5b6128b96128b36003612803565b91612803565b146128c15750565b6128dc905f9182916335e2f38360e21b83526004830161061f565b0390fd5b634e487b7160e01b5f52601160045260245ffd5b61290361290991939293610418565b92610418565b820180921161291457565b6128e0565b906129249101610418565b90565b9190918061294561293f61293a5f6114f1565b6102e4565b916102e4565b145f14612a26576129696129628361295d6002611225565b6128f4565b6002611fc5565b5b8261298561297f61297a5f6114f1565b6102e4565b916102e4565b145f146129fa576129a96129a28361299d6002611225565b611c31565b6002611fc5565b5b9190916129f56129e36129dd7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef93610e3e565b93610e3e565b936129ec610222565b918291826104e1565b0390a3565b612a2182612a1b612a0c5f8790611486565b91612a1683611225565b612919565b90611fc5565b6129aa565b612a39612a345f8390611486565b611225565b80612a4c612a4685610418565b91610418565b10612a7457612a5f612a6f918490611c31565b612a6a5f8490611486565b611fc5565b61296a565b90612a929091925f93849363391434e360e21b855260048501611bff565b0390fd5b90565b612aad612aa8612ab292612a96565b610e13565b610418565b90565b67ffffffffffffffff8111612ad357612acf602091610390565b0190565b6110d6565b90612aea612ae583612ab5565b611655565b918252565b369037565b90612b19612b0183612ad8565b92602080612b0f8693612ab5565b9201910390612aef565b565b612b23610fe8565b50612b2d81612b86565b90612b40612b3b6020612a99565b612af4565b918252602082015290565b612b5f612b5a612b64926124d4565b610e13565b610418565b90565b90565b612b7e612b79612b8392612b67565b610e13565b610418565b90565b612b9b612ba091612b9561120a565b506112f9565b612663565b612baa60ff612b4b565b1680612bbf612bb9601f612b6a565b91610418565b11612bc75790565b5f632cd44ac360e21b815280612bdf60048201610331565b0390fdfea26469706673582212206e9613da729b45b797611edf5947c09e70583e02b4fab9611ac6e3fec01065c964736f6c634300081a0033000000000000000000000000e78615f841c3c013173fbe7679d17442c8673cc1

Deployed Bytecode

0x60806040526004361015610013575b610ede565b61001d5f3561021c565b806301ffc9a71461021757806302c52db01461021257806306fdde031461020d578063095ea7b3146102085780630e18b6811461020357806318160ddd146101fe578063228b547e146101f957806323b872dd146101f4578063248a9ca3146101ef5780632f2ff15d146101ea578063313ce567146101e55780633644e515146101e057806336568abe146101db57806340c10f19146101d657806342966c68146101d157806370a08231146101cc57806375829def146101c75780637ecebe00146101c25780637fa46ab4146101bd57806384b0196e146101b85780638da5cb5b146101b357806391d14854146101ae57806395d89b41146101a95780639dc29fac146101a4578063a217fddf1461019f578063a9059cbb1461019a578063aa05aa5f14610195578063d505accf14610190578063d53913931461018b578063d547741f14610186578063dd62ed3e146101815763e877a5260361000e57610ea9565b610ddd565b610d7c565b610d47565b610cde565b610c16565b610bb1565b610b7c565b610b0d565b610ad8565b610aa2565b610a6d565b610a1c565b6108c8565b610864565b610831565b6107fc565b6107c9565b610777565b61075c565b610727565b6106f2565b610696565b610634565b610598565b61052b565b6104f6565b6104a1565b61046b565b6103e3565b610336565b6102a4565b60e01c90565b60405190565b5f80fd5b5f80fd5b63ffffffff60e01b1690565b61024581610230565b0361024c57565b5f80fd5b9050359061025d8261023c565b565b9060208282031261027857610275915f01610250565b90565b61022c565b151590565b61028b9061027d565b9052565b91906102a2905f60208501940190610282565b565b346102d4576102d06102bf6102ba36600461025f565b610ee6565b6102c7610222565b9182918261028f565b0390f35b610228565b60018060a01b031690565b6102ed906102d9565b90565b6102f9816102e4565b0361030057565b5f80fd5b90503590610311826102f0565b565b9060208282031261032c57610329915f01610304565b90565b61022c565b5f0190565b346103645761034e610349366004610313565b610fdd565b610356610222565b8061036081610331565b0390f35b610228565b5f91031261037357565b61022c565b5190565b60209181520190565b90825f9392825e0152565b601f801991011690565b6103b96103c26020936103c7936103b081610378565b9384809361037c565b95869101610385565b610390565b0190565b6103e09160208201915f81840391015261039a565b90565b34610413576103f3366004610369565b61040f6103fe611141565b610406610222565b918291826103cb565b0390f35b610228565b90565b61042481610418565b0361042b57565b5f80fd5b9050359061043c8261041b565b565b9190604083820312610466578061045a610463925f8601610304565b9360200161042f565b90565b61022c565b3461049c5761049861048761048136600461043e565b90611157565b61048f610222565b9182918261028f565b0390f35b610228565b346104cf576104b1366004610369565b6104b96111aa565b6104c1610222565b806104cb81610331565b0390f35b610228565b6104dd90610418565b9052565b91906104f4905f602085019401906104d4565b565b3461052657610506366004610369565b610522610511611232565b610519610222565b918291826104e1565b0390f35b610228565b346105595761054361053e366004610313565b6112bb565b61054b610222565b8061055581610331565b0390f35b610228565b909160608284031261059357610590610579845f8501610304565b936105878160208601610304565b9360400161042f565b90565b61022c565b346105c9576105c56105b46105ae36600461055e565b916112c6565b6105bc610222565b9182918261028f565b0390f35b610228565b90565b6105da816105ce565b036105e157565b5f80fd5b905035906105f2826105d1565b565b9060208282031261060d5761060a915f016105e5565b90565b61022c565b61061b906105ce565b9052565b9190610632905f60208501940190610612565b565b346106645761066061064f61064a3660046105f4565b61133f565b610657610222565b9182918261061f565b0390f35b610228565b9190604083820312610691578061068561068e925f86016105e5565b93602001610304565b90565b61022c565b346106c5576106af6106a9366004610669565b906113d1565b6106b7610222565b806106c181610331565b0390f35b610228565b60ff1690565b6106d9906106ca565b9052565b91906106f0905f602085019401906106d0565b565b3461072257610702366004610369565b61071e61070d611400565b610715610222565b918291826106dd565b0390f35b610228565b3461075757610737366004610369565b610753610742611416565b61074a610222565b9182918261061f565b0390f35b610228565b346107725761076c366004610669565b9061142a565b610228565b346107a65761079061078a36600461043e565b9061146e565b610798610222565b806107a281610331565b0390f35b610228565b906020828203126107c4576107c1915f0161042f565b90565b61022c565b346107f7576107e16107dc3660046107ab565b61147a565b6107e9610222565b806107f381610331565b0390f35b610228565b3461082c57610828610817610812366004610313565b61149c565b61081f610222565b918291826104e1565b0390f35b610228565b3461085f57610849610844366004610313565b611600565b610851610222565b8061085b81610331565b0390f35b610228565b346108945761089061087f61087a366004610313565b61160b565b610887610222565b918291826104e1565b0390f35b610228565b7f44ac9762eec3a11893fefb11d028bb3102560094137c3ed4518712475b2577cc90565b6108c5610899565b90565b346108f8576108d8366004610369565b6108f46108e36108bd565b6108eb610222565b9182918261061f565b0390f35b610228565b60ff60f81b1690565b61090f906108fd565b9052565b61091c906102e4565b9052565b5190565b60209181520190565b60200190565b61093c90610418565b9052565b9061094d81602093610933565b0190565b60200190565b9061097461096e61096784610920565b8093610924565b9261092d565b905f5b8181106109845750505090565b90919261099d6109976001928651610940565b94610951565b9101919091610977565b939591946109f86109ed610a0c956109df610a0295610a199c9a6109d260e08c01925f8d0190610906565b8a820360208c015261039a565b9088820360408a015261039a565b9760608701906104d4565b6080850190610913565b60a0830190610612565b60c0818403910152610957565b90565b34610a5357610a2c366004610369565b610a4f610a376116d2565b93610a46979597939193610222565b978897886109a7565b0390f35b610228565b9190610a6b905f60208501940190610913565b565b34610a9d57610a7d366004610369565b610a99610a8861175c565b610a90610222565b91829182610a58565b0390f35b610228565b34610ad357610acf610abe610ab8366004610669565b90611793565b610ac6610222565b9182918261028f565b0390f35b610228565b34610b0857610ae8366004610369565b610b04610af36117bd565b610afb610222565b918291826103cb565b0390f35b610228565b34610b3c57610b26610b2036600461043e565b906117fb565b610b2e610222565b80610b3881610331565b0390f35b610228565b90565b5f1b90565b610b5d610b58610b6292610b41565b610b44565b6105ce565b90565b610b6e5f610b49565b90565b610b79610b65565b90565b34610bac57610b8c366004610369565b610ba8610b97610b71565b610b9f610222565b9182918261061f565b0390f35b610228565b34610be257610bde610bcd610bc736600461043e565b90611807565b610bd5610222565b9182918261028f565b0390f35b610228565b7fd15a633a037a8cb1e45b365d4ebd232aae2a8d891c9de0523b8e2fe68362d06690565b610c13610be7565b90565b34610c4657610c26366004610369565b610c42610c31610c0b565b610c39610222565b9182918261061f565b0390f35b610228565b610c54816106ca565b03610c5b57565b5f80fd5b90503590610c6c82610c4b565b565b60e081830312610cd957610c84825f8301610304565b92610c928360208401610304565b92610ca0816040850161042f565b92610cae826060830161042f565b92610cd6610cbf8460808501610c5f565b93610ccd8160a086016105e5565b9360c0016105e5565b90565b61022c565b34610d1357610cfd610cf1366004610c6e565b959490949391936118d5565b610d05610222565b80610d0f81610331565b0390f35b610228565b7f9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a690565b610d44610d18565b90565b34610d7757610d57366004610369565b610d73610d62610d3c565b610d6a610222565b9182918261061f565b0390f35b610228565b34610dab57610d95610d8f366004610669565b90611a39565b610d9d610222565b80610da781610331565b0390f35b610228565b9190604083820312610dd85780610dcc610dd5925f8601610304565b93602001610304565b90565b61022c565b34610e0e57610e0a610df9610df3366004610db0565b90611a5b565b610e01610222565b918291826104e1565b0390f35b610228565b90565b610e2a610e25610e2f926102d9565b610e13565b6102d9565b90565b610e3b90610e16565b90565b610e4790610e32565b90565b90610e5490610e3e565b5f5260205260405f2090565b1c90565b60ff1690565b610e7a906008610e7f9302610e60565b610e64565b90565b90610e8d9154610e6a565b90565b610ea690610ea1600b915f92610e4a565b610e82565b90565b34610ed957610ed5610ec4610ebf366004610313565b610e90565b610ecc610222565b9182918261028f565b0390f35b610228565b5f80fd5b5f90565b610eee610ee2565b5080610f09610f03637965db0b60e01b610230565b91610230565b14908115610f16575b5090565b610f209150611a83565b5f610f12565b610f3f90610f3a610f35610be7565b611aa9565b610f86565b565b90610f4d60ff91610b44565b9181191691161790565b610f609061027d565b90565b90565b90610f7b610f76610f8292610f57565b610f63565b8254610f41565b9055565b610f9b5f610f96600b8490610e4a565b610f66565b610fc57f29e32a16a9d465ee92796d9fc7e93d2a9ab78cdc803298df7ed84b52d19cd42f91610e3e565b90610fce610222565b80610fd881610331565b0390a2565b610fe690610f26565b565b606090565b634e487b7160e01b5f52602260045260245ffd5b9060016002830492168015611021575b602083101461101c57565b610fed565b91607f1691611011565b60209181520190565b5f5260205f2090565b905f929180549061105761105083611001565b809461102b565b916001811690815f146110ae5750600114611072575b505050565b61107f9192939450611034565b915f925b81841061109657505001905f808061106d565b60018160209295939554848601520191019290611083565b92949550505060ff19168252151560200201905f808061106d565b906110d39161103d565b90565b634e487b7160e01b5f52604160045260245ffd5b906110f490610390565b810190811067ffffffffffffffff82111761110e57604052565b6110d6565b9061113361112c92611123610222565b938480926110c9565b03836110ea565b565b61113e90611113565b90565b611149610fe8565b506111546003611135565b90565b61117491611163610ee2565b5061116c611abd565b919091611aca565b600190565b5f1c90565b60018060a01b031690565b61119561119a91611179565b61117e565b90565b6111a79054611189565b90565b6111b2611abd565b6111cd6111c76111c2600a61119d565b6102e4565b916102e4565b036111ee576111eb6111dd610b65565b6111e5611abd565b90611b3e565b50565b5f63058d9a1b60e01b81528061120660048201610331565b0390fd5b5f90565b90565b61121d61122291611179565b61120e565b90565b61122f9054611211565b90565b61123a61120a565b506112456002611225565b90565b6112619061125c611257610be7565b611aa9565b611263565b565b6112796001611274600b8490610e4a565b610f66565b6112a37f8d6233ac6005c4f3eaa99b3aebdbe7ad15476dd961858142c4080952392f979d91610e3e565b906112ac610222565b806112b681610331565b0390a2565b6112c490611248565b565b916112f0926112d3610ee2565b506112e86112df611abd565b82908491611c3f565b919091611ccb565b600190565b5f90565b611302906105ce565b90565b9061130f906112f9565b5f5260205260405f2090565b90565b61132a61132f91611179565b61131b565b90565b61133c905461131e565b90565b600161135861135e926113506112f5565b506008611305565b01611332565b90565b9061137b91611376611371610b65565b611aa9565b61137d565b565b908161139861139261138d610b65565b6105ce565b916105ce565b146113a8576113a6916113c4565b565b5f63318bd07d60e11b8152806113c060048201610331565b0390fd5b906113ce91611b3e565b50565b906113db91611361565b565b5f90565b90565b6113f86113f36113fd926113e1565b610e13565b6106ca565b90565b6114086113dd565b5061141360126113e4565b90565b61141e6112f5565b50611427611d68565b90565b5f6314ec366d60e21b81528061144260048201610331565b0390fd5b906114609161145b611456610d18565b611aa9565b611462565b565b9061146c91611e22565b565b9061147891611446565b565b6114849033611e80565b565b9061149090610e3e565b5f5260205260405f2090565b6114b26114b7916114ab61120a565b505f611486565b611225565b90565b6114d3906114ce6114c9610b65565b611aa9565b61153b565b565b6114e96114e46114ee92610b41565b610e13565b6102d9565b90565b6114fa906114d5565b90565b9061150e60018060a01b0391610b44565b9181191691161790565b90565b9061153061152b61153792610e3e565b611518565b82546114fd565b9055565b8061155661155061154b5f6114f1565b6102e4565b916102e4565b1480156115df575b6115c35761156d81600a61151b565b611577600961119d565b906115ab6115a57fefdcbba819467e00b0262c12892dda980bac68580b72178e57a162368b80876693610e3e565b91610e3e565b916115b4610222565b806115be81610331565b0390a3565b5f63318bd07d60e11b8152806115db60048201610331565b0390fd5b50806115fa6115f46115ef611abd565b6102e4565b916102e4565b1461155e565b611609906114ba565b565b61161d9061161761120a565b50611edf565b90565b5f90565b5f90565b606090565b61163690610e32565b90565b61164d61164861165292610b41565b610e13565b610418565b90565b90611668611661610222565b92836110ea565b565b67ffffffffffffffff81116116825760208091020190565b6110d6565b906116996116948361166a565b611655565b918252565b369037565b906116c86116b083611687565b926020806116be869361166a565b920191039061169e565b565b600f60f81b90565b6116da611620565b506116e3610fe8565b506116ec610fe8565b506116f561120a565b506116fe611624565b506117076112f5565b50611710611628565b50611719611f01565b90611722611f41565b90469061172e3061162d565b906117385f610b49565b9061174a6117455f611639565b6116a3565b906117536116ca565b96959493929190565b611764611624565b5061176f600961119d565b90565b61177e61178391611179565b610e64565b90565b6117909054611772565b90565b6117ba915f6117af6117b5936117a7610ee2565b506008611305565b01610e4a565b611786565b90565b6117c5610fe8565b506117d06004611135565b90565b906117ed916117e86117e3610899565b611aa9565b6117ef565b565b906117f991611e80565b565b90611805916117d3565b565b61182491611813610ee2565b5061181c611abd565b919091611ccb565b600190565b7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c990565b919461189561189f9298979561188b60a0966118816118a69a61187760c08a019e5f8b0190610612565b6020890190610913565b6040870190610913565b60608501906104d4565b60808301906104d4565b01906104d4565b565b60200190565b5190565b9160206118d39294936118cc60408201965f830190610913565b0190610913565b565b9695919392949094426118f06118ea83610418565b91610418565b116119aa579061195961196294939261194161190a611829565b6119328c80948c9161191c8d91611fe5565b9192611926610222565b9788966020880161184d565b602082018103825203826110ea565b61195361194d826118ae565b916118a8565b20612018565b92909192612035565b8061197561196f876102e4565b916102e4565b0361198a57506119889293919091611aca565b565b84906119a65f9283926325c0072360e11b8452600484016118b2565b0390fd5b6119c5905f91829163313c898160e11b8352600483016104e1565b0390fd5b906119e3916119de6119d9610b65565b611aa9565b6119e5565b565b9081611a006119fa6119f5610b65565b6105ce565b916105ce565b14611a1057611a0e91611a2c565b565b5f63318bd07d60e11b815280611a2860048201610331565b0390fd5b90611a369161205c565b50565b90611a43916119c9565b565b90611a4f90610e3e565b5f5260205260405f2090565b611a8091611a76611a7b92611a6e61120a565b506001611a45565b611486565b611225565b90565b611a8b610ee2565b50611aa5611a9f6301ffc9a760e01b610230565b91610230565b1490565b611abb90611ab5611abd565b90612121565b565b611ac5611624565b503390565b91611ad8929160019261215c565b565b1b90565b91906008611afe910291611af860018060a01b0384611ada565b92611ada565b9181191691161790565b9190611b1e611b19611b2693610e3e565b611518565b908354611ade565b9055565b611b3c91611b36611624565b91611b08565b565b90611b7191611b4b610ee2565b5080611b66611b60611b5b610b65565b6105ce565b916105ce565b14611b74575b61226b565b90565b611b7e600961119d565b82611bb2611bac7ff8ccb027dfcd135e000e9d45e6cc2d662578a8825d4c45b5e32e0adf67e79ec693610e3e565b91610e3e565b91611bbb610222565b80611bc581610331565b0390a3611be3611bd3610b65565b611bdd600961119d565b9061205c565b50611bef82600961151b565b611bfa5f600a611b2a565b611b6c565b604090611c28611c2f9496959396611c1e60608401985f850190610913565b60208301906104d4565b01906104d4565b565b90611c3c9103610418565b90565b929192611c4d818390611a5b565b9081611c62611c5c5f19610418565b91610418565b10611c6f575b5050509050565b81611c82611c7c87610418565b91610418565b10611ca857611c9f9394611c97919392611c31565b905f9261215c565b805f8080611c68565b50611cc7849291925f938493637dc7a0d960e11b855260048501611bff565b0390fd5b9182611ce7611ce1611cdc5f6114f1565b6102e4565b916102e4565b14611d415781611d07611d01611cfc5f6114f1565b6102e4565b916102e4565b14611d1a57611d1892919091612317565b565b611d3d611d265f6114f1565b5f91829163ec442f0560e01b835260048301610a58565b0390fd5b611d64611d4d5f6114f1565b5f918291634b637e8f60e11b835260048301610a58565b0390fd5b611d706112f5565b50611d7a3061162d565b611dac611da67f000000000000000000000000e556aba6fe6036275ec1f87eda296be72c811bce6102e4565b916102e4565b1480611de8575b5f14611ddd577f4816d87ed510f66d4c53127058374ddccde215556b5d372a0cf4551243d84eb690565b611de5612436565b90565b5046611e1c611e167f0000000000000000000000000000000000000000000000000000000000000001610418565b91610418565b14611db3565b80611e3d611e37611e325f6114f1565b6102e4565b916102e4565b14611e5957611e5791611e4f5f6114f1565b919091612317565b565b611e7c611e655f6114f1565b5f91829163ec442f0560e01b835260048301610a58565b0390fd5b9081611e9c611e96611e915f6114f1565b6102e4565b916102e4565b14611eb857611eb69190611eaf5f6114f1565b9091612317565b565b611edb611ec45f6114f1565b5f918291634b637e8f60e11b835260048301610a58565b0390fd5b611ef6611efb91611eee61120a565b506007611486565b611225565b90565b90565b611f09610fe8565b50611f3e7f4e657574726c205553440000000000000000000000000000000000000000000a611f386005611efe565b906125d0565b90565b611f49610fe8565b50611f7e7f3100000000000000000000000000000000000000000000000000000000000001611f786006611efe565b906125d0565b90565b6001611f8d9101610418565b90565b90611f9c5f1991610b44565b9181191691161790565b611fba611fb5611fbf92610418565b610e13565b610418565b90565b90565b90611fda611fd5611fe192611fa6565b611fc2565b8254611f90565b9055565b611ff990611ff161120a565b506007611486565b61201561200582611225565b9161200f83611f81565b90611fc5565b90565b612032906120246112f5565b5061202d611d68565b61261e565b90565b926120509261205994612046611624565b50929091926126e4565b9092919261280f565b90565b612064610ee2565b50612070818390611793565b5f146120f8576120975f6120925f61208a60088690611305565b018590610e4a565b610f66565b906120a0611abd565b906120dd6120d76120d17ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b956112f9565b92610e3e565b92610e3e565b926120e6610222565b806120f081610331565b0390a4600190565b50505f90565b91602061211f92949361211860408201965f830190610913565b0190610612565b565b90612136612130838390611793565b1561027d565b61213e575050565b6121585f92839263e2517d3f60e01b8452600484016120fe565b0390fd5b90928161217961217361216e5f6114f1565b6102e4565b916102e4565b14612244578361219961219361218e5f6114f1565b6102e4565b916102e4565b1461221d576121bd836121b86121b160018690611a45565b8790611486565b611fc5565b6121c7575b505050565b9190916122126122006121fa7f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92593610e3e565b93610e3e565b93612209610222565b918291826104e1565b0390a35f80806121c2565b6122406122295f6114f1565b5f918291634a1406b160e11b835260048301610a58565b0390fd5b6122676122505f6114f1565b5f91829163e602df0560e01b835260048301610a58565b0390fd5b612273610ee2565b50612288612282828490611793565b1561027d565b5f14612311576122b060016122ab5f6122a360088690611305565b018590610e4a565b610f66565b906122b9611abd565b906122f66122f06122ea7f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d956112f9565b92610e3e565b92610e3e565b926122ff610222565b8061230981610331565b0390a4600190565b50505f90565b9161232c612327600b8590610e4a565b611786565b806123a2575b8015612388575b801561236e575b6123525761235092919091612927565b565b5f638373f64760e01b81528061236a60048201610331565b0390fd5b5061238361237e600b3390610e4a565b611786565b612340565b5061239d612398600b8490610e4a565b611786565b612339565b50816123be6123b86123b35f6114f1565b6102e4565b916102e4565b1415612332565b7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f90565b909594926124349461242361242d9261241960809661240f60a088019c5f890190610612565b6020870190610612565b6040850190610612565b60608301906104d4565b0190610913565b565b61243e6112f5565b506124476123c5565b6124be7f003d186070b44fb1281dce0750d2bc27747625521bc5e64f616fa1daf61eafcf916124af7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc64661249a3061162d565b916124a3610222565b968795602087016123e9565b602082018103825203826110ea565b6124d06124ca826118ae565b916118a8565b2090565b90565b6124eb6124e66124f0926124d4565b610b44565b6105ce565b90565b6124fd60ff6124d7565b90565b5f5260205f2090565b905f929180549061252361251c83611001565b809461102b565b916001811690815f1461257a575060011461253e575b505050565b61254b9192939450612500565b915f925b81841061256257505001905f8080612539565b6001816020929593955484860152019101929061254f565b92949550505060ff19168252151560200201905f8080612539565b9061259f91612509565b90565b906125c26125bb926125b2610222565b93848092612595565b03836110ea565b565b6125cd906125a2565b90565b906125d9610fe8565b506125e3826112f9565b6125fc6125f66125f16124f3565b6105ce565b916105ce565b14155f14612611575061260e90612b1b565b90565b61261b91506125c4565b90565b6042916126296112f5565b50604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b5f90565b61266f61267491611179565b611fa6565b90565b90565b61268e61268961269392612677565b610e13565b610418565b90565b6126cb6126d2946126c16060949897956126b7608086019a5f870190610612565b60208501906106d0565b6040830190610612565b0190610612565b565b6126dc610222565b3d5f823e3d90fd5b9392936126ef611624565b506126f861265f565b506127016112f5565b5061270b85612663565b61273d6127377f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a061267a565b91610418565b116127ca5790612760602094955f94939293612757610222565b94859485612696565b838052039060015afa156127c5576127785f51610b44565b8061279361278d6127885f6114f1565b6102e4565b916102e4565b146127a9575f916127a35f610b49565b91929190565b506127b35f6114f1565b6001916127bf5f610b49565b91929190565b6126d4565b5050506127d65f6114f1565b9060039291929190565b634e487b7160e01b5f52602160045260245ffd5b600411156127fe57565b6127e0565b9061280d826127f4565b565b8061282261281c5f612803565b91612803565b145f1461282d575050565b8061284161283b6001612803565b91612803565b145f14612864575f63f645eedf60e01b81528061286060048201610331565b0390fd5b806128786128726002612803565b91612803565b145f146128a6576128a261288b83612663565b5f91829163fce698f760e01b8352600483016104e1565b0390fd5b6128b96128b36003612803565b91612803565b146128c15750565b6128dc905f9182916335e2f38360e21b83526004830161061f565b0390fd5b634e487b7160e01b5f52601160045260245ffd5b61290361290991939293610418565b92610418565b820180921161291457565b6128e0565b906129249101610418565b90565b9190918061294561293f61293a5f6114f1565b6102e4565b916102e4565b145f14612a26576129696129628361295d6002611225565b6128f4565b6002611fc5565b5b8261298561297f61297a5f6114f1565b6102e4565b916102e4565b145f146129fa576129a96129a28361299d6002611225565b611c31565b6002611fc5565b5b9190916129f56129e36129dd7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef93610e3e565b93610e3e565b936129ec610222565b918291826104e1565b0390a3565b612a2182612a1b612a0c5f8790611486565b91612a1683611225565b612919565b90611fc5565b6129aa565b612a39612a345f8390611486565b611225565b80612a4c612a4685610418565b91610418565b10612a7457612a5f612a6f918490611c31565b612a6a5f8490611486565b611fc5565b61296a565b90612a929091925f93849363391434e360e21b855260048501611bff565b0390fd5b90565b612aad612aa8612ab292612a96565b610e13565b610418565b90565b67ffffffffffffffff8111612ad357612acf602091610390565b0190565b6110d6565b90612aea612ae583612ab5565b611655565b918252565b369037565b90612b19612b0183612ad8565b92602080612b0f8693612ab5565b9201910390612aef565b565b612b23610fe8565b50612b2d81612b86565b90612b40612b3b6020612a99565b612af4565b918252602082015290565b612b5f612b5a612b64926124d4565b610e13565b610418565b90565b90565b612b7e612b79612b8392612b67565b610e13565b610418565b90565b612b9b612ba091612b9561120a565b506112f9565b612663565b612baa60ff612b4b565b1680612bbf612bb9601f612b6a565b91610418565b11612bc75790565b5f632cd44ac360e21b815280612bdf60048201610331565b0390fdfea26469706673582212206e9613da729b45b797611edf5947c09e70583e02b4fab9611ac6e3fec01065c964736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000e78615f841c3c013173fbe7679d17442c8673cc1

-----Decoded View---------------
Arg [0] : _admin (address): 0xE78615F841c3C013173FBE7679d17442C8673Cc1

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000e78615f841c3c013173fbe7679d17442c8673cc1


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.