ETH Price: $1,944.13 (-1.51%)
Gas: 0.04 Gwei
 

Overview

Max Total Supply

47,539.782980552923485977 TWORM

Holders

67

Transfers

-
118 ( -25.32%)

Market

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
WORM

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
No with 200 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

contract WORM is ERC20, ERC20Permit {
    event Participated(address indexed participant, uint256 fromEpoch, uint256 numEpochs, uint256 amountPerEpoch);
    event Claimed(address indexed claimant, uint256 fromEpoch, uint256 numEpochs, uint256 totalClaimed);

    uint256 constant EPOCH_DURATION = 600 seconds;
    uint256 constant INITIAL_REWARD_PER_EPOCH = 50 ether;
    uint256 constant REWARD_DECAY_NUMERATOR = 9999966993045875;
    uint256 constant REWARD_DECAY_DENOMINATOR = 10000000000000000;
    uint256 constant DEFAULT_INFO_MARGIN = 5; // X epochs before and X epochs after the current epoch

    IERC20 public immutable bethContract;
    uint256 public immutable startingTimestamp;
    uint256 public immutable endingTimestamp;

    uint256 public cachedRewardEpoch = 0;
    mapping(uint256 => uint256) public cachedReward;
    uint256 public cachedRewardsAccumulatedSum = 0;

    mapping(uint256 => uint256) public epochTotal;
    mapping(uint256 => mapping(address => uint256)) public epochUser;

    /**
     * @notice Deploys the WORM contract with initial configuration.
     * @dev Sets the beth contract address, initializes the starting timestamp, caches the initial reward, and mints a premine.
     * @param _bethContract The address of the BETH token contract.
     * @param _premineAddress The address to receive the initial premine.
     * @param _premineAmount The amount of WORM tokens to premine.
     */
    constructor(
        IERC20 _bethContract,
        address _premineAddress,
        uint256 _premineAmount,
        uint256 _startingTimestamp,
        uint256 _endingTimestamp
    ) ERC20("TWORM", "TWORM") ERC20Permit("TWORM") {
        bethContract = _bethContract;
        startingTimestamp = _startingTimestamp != 0 ? _startingTimestamp : block.timestamp;
        endingTimestamp = _endingTimestamp;
        cachedReward[0] = INITIAL_REWARD_PER_EPOCH;
        cachedRewardsAccumulatedSum = INITIAL_REWARD_PER_EPOCH;
        if (_premineAddress != address(0)) {
            _mint(_premineAddress, _premineAmount);
        }
    }

    /**
     * @notice Returns the current epoch number based on the starting block and blocks per epoch.
     * @dev The epoch number is calculated by dividing the number of blocks since the starting block by the number of blocks per epoch.
     * @return The current epoch number.
     */
    function currentEpoch() public view returns (uint256) {
        require(block.timestamp >= startingTimestamp, "Mining has not started yet!");
        return (block.timestamp - startingTimestamp) / EPOCH_DURATION;
    }

    /**
     * @notice Computes reward of an specific epoch.
     * @dev It will used the cached reward to speed things up.
     * @param epoch The epoch to calculate reward for.
     */
    function rewardOf(uint256 epoch) public view returns (uint256) {
        if (epoch <= cachedRewardEpoch) {
            return cachedReward[epoch];
        }
        uint256 currRewardEpoch = cachedRewardEpoch;
        uint256 reward = cachedReward[currRewardEpoch];
        while (currRewardEpoch < epoch) {
            reward = (reward * REWARD_DECAY_NUMERATOR) / REWARD_DECAY_DENOMINATOR;
            currRewardEpoch += 1;
        }
        return reward;
    }

    /**
     * @notice Returns the current reward amount for the current epoch.
     * @dev This function calls `rewardOf(currentEpoch())` to get the current epoch’s reward value.
     * @return The current epoch reward amount.
     */
    function currentReward() public view returns (uint256) {
        return rewardOf(currentEpoch());
    }

    /**
     * @notice Allows a user to get the claim amount of their rewards for participation in past epochs.
     * @dev This function calculates and mints the reward based on the user's participation and the total participation in each epoch.
     * @param _startingEpoch The starting epoch number from which to claim rewards.
     * @param _numEpochs The number of epochs to claim rewards for.
     * @param _user The user address.
     */
    function calculateMintAmount(uint256 _startingEpoch, uint256 _numEpochs, address _user)
        public
        view
        returns (uint256)
    {
        require(_startingEpoch + _numEpochs <= currentEpoch(), "Cannot claim an ongoing epoch!");
        uint256 mintAmount = 0;
        for (uint256 i = 0; i < _numEpochs; i++) {
            uint256 total = epochTotal[_startingEpoch + i];
            if (total > 0) {
                uint256 user = epochUser[_startingEpoch + i][_user];
                mintAmount += (rewardOf(_startingEpoch + i) * user) / total;
            }
        }
        return mintAmount;
    }

    /**
     * @notice Estimates the amount of tokens that can be minted for a given participation over multiple epochs.
     * @dev This function calculates the approximate mint amount based on the user's participation and the total participation in each epoch.
     * @param _amountPerEpoch The amount the user plans to participateco per epoch.
     * @param _numEpochs The number of epochs the user plans to participate in.
     * @return The approximate amount of tokens that can be minted.
     */
    function approximate(uint256 _amountPerEpoch, uint256 _numEpochs) public view returns (uint256) {
        uint256 mintAmount = 0;
        uint256 currEpoch = currentEpoch();
        for (uint256 i = 0; i < _numEpochs; i++) {
            uint256 epochIndex = currEpoch + i;
            uint256 reward = rewardOf(epochIndex);
            uint256 user = epochUser[epochIndex][msg.sender] + _amountPerEpoch;
            uint256 total = epochTotal[epochIndex] + _amountPerEpoch;
            mintAmount += (reward * user) / total;
        }
        return mintAmount;
    }

    function discoverRewards(uint256 _fromEpoch, uint256 _numEpochs, address _user, uint256 _maxFound)
        public
        view
        returns (uint256 nextEpochToSearch, uint256[] memory epochs)
    {
        // Initialize epochs array with maxFound capacity
        epochs = new uint256[](_maxFound);
        uint256 foundCount = 0;

        uint256 maxEpoch = _fromEpoch + _numEpochs;
        uint256 i = _fromEpoch;
        while (i < maxEpoch) {
            // Check if user has claimable reward
            if (epochUser[i][_user] > 0) {
                epochs[foundCount] = i;
                foundCount++;
                if (foundCount >= _maxFound) {
                    i++;
                    break;
                }
            }
            i++;
        }

        // Resize the array to actual found count
        assembly {
            mstore(epochs, foundCount)
        }

        nextEpochToSearch = i;
    }

    struct Info {
        uint256 totalWorm;
        uint256 totalBeth;
        uint256 currentEpoch;
        uint256 currentEpochReward;
        uint256 epochRemainingTime;
        uint256 since;
        uint256[] userContribs;
        uint256[] totalContribs;
    }

    /**
     * @notice Returns general contract statistics and participation details for a user.
     * @dev Provides total supplies, current epoch info, remaining time in the current epoch, and user/total contributions for a range of epochs.
     * @param user The address of the user to query.
     * @param since The starting epoch index for which to retrieve information.
     * @param count The number of epochs to include in the response.
     * @return An `Info` struct containing global and user-specific information.
     */
    function info(address user, uint256 since, uint256 count) public view returns (Info memory) {
        if (since == 0 && count == 0) {
            uint256 epoch = currentEpoch();
            since = epoch >= DEFAULT_INFO_MARGIN ? (epoch - DEFAULT_INFO_MARGIN) : 0;
            count = 1 + 2 * DEFAULT_INFO_MARGIN;
        }
        uint256 totalBeth = bethContract.totalSupply();
        uint256 totalWorm = this.totalSupply();
        uint256 epochRemainingTime =
            EPOCH_DURATION - (block.timestamp - startingTimestamp - currentEpoch() * EPOCH_DURATION);
        uint256[] memory userContribs = new uint256[](count);
        uint256[] memory totalContribs = new uint256[](count);
        for (uint256 i = 0; i < count; i++) {
            userContribs[i] = epochUser[i + since][user];
            totalContribs[i] = epochTotal[i + since];
        }
        return Info({
            totalWorm: totalWorm,
            totalBeth: totalBeth,
            currentEpoch: currentEpoch(),
            currentEpochReward: currentReward(),
            since: since,
            epochRemainingTime: epochRemainingTime,
            userContribs: userContribs,
            totalContribs: totalContribs
        });
    }

    struct EpochRange {
        uint256 startingEpoch;
        uint256 numEpochs;
    }

    /**
     * @notice Estimates the amount of tokens that can be minted for an array of epoch ranges.
     * @dev Ensures the ranges do not overlap with each other!
     * @param _epochRanges Array of epoch ranges
     * @return The approximate amount of tokens that can be minted.
     */
    function multiApproximate(EpochRange[] calldata _epochRanges) public view returns (uint256) {
        uint256 mintAmount = 0;
        for (uint256 i = 0; i < _epochRanges.length; i++) {
            if (i > 0) {
                require(
                    _epochRanges[i].startingEpoch >= _epochRanges[i - 1].startingEpoch + _epochRanges[i - 1].numEpochs,
                    "Ranges overlap!"
                );
            }
            mintAmount += approximate(_epochRanges[i].startingEpoch, _epochRanges[i].numEpochs);
        }
        return mintAmount;
    }

    /*
     * ========================
     * END OF VIEW FUNCTION!
     * =======================
     */

    /**
     * @notice Computes and caches rewards up to an epoch.
     * @dev If the reward for the epoch has not been cached, it iteratively calculates it based on the decay rate until the requested epoch.
     * @param epoch The last epoch to calculate reward for.
     */
    function cacheRewards(uint256 epoch) public {
        uint256 currRewardEpoch = cachedRewardEpoch;
        uint256 reward = cachedReward[currRewardEpoch];
        uint256 rewardSum = 0;
        while (currRewardEpoch < epoch) {
            reward = (reward * REWARD_DECAY_NUMERATOR) / REWARD_DECAY_DENOMINATOR;
            currRewardEpoch += 1;
            cachedReward[currRewardEpoch] = reward;
            rewardSum += reward;
        }
        cachedRewardEpoch = currRewardEpoch;
        cachedRewardsAccumulatedSum += rewardSum;
    }

    /**
     * @notice Allows a user to participate in the reward program by locking tokens for multiple epochs.
     * @dev This function updates the user's participation in the specified number of epochs and transfers the required amount of beth tokens to the contract.
     * @param _amountPerEpoch The amount of tokens to lock per epoch.
     * @param _numEpochs The number of epochs to participate in.
     */
    function participate(uint256 _amountPerEpoch, uint256 _numEpochs) external {
        if (endingTimestamp != 0) {
            require(block.timestamp < endingTimestamp, "Network has ended!");
        }

        require(_numEpochs != 0, "Invalid epoch number.");
        uint256 currEpoch = currentEpoch();
        for (uint256 i = 0; i < _numEpochs; i++) {
            epochTotal[currEpoch + i] += _amountPerEpoch;
            epochUser[currEpoch + i][msg.sender] += _amountPerEpoch;
        }
        require(bethContract.transferFrom(msg.sender, address(this), _numEpochs * _amountPerEpoch), "TF");
        emit Participated(msg.sender, currEpoch, _numEpochs, _amountPerEpoch);
    }

    /**
     * @notice Allows a user to claim their rewards for participation in past epochs.
     * @dev This function calculates and mints the reward based on the user's participation and the total participation in each epoch.
     * @param _startingEpoch The starting epoch number from which to claim rewards.
     * @param _numEpochs The number of epochs to claim rewards for.
     */
    function claim(uint256 _startingEpoch, uint256 _numEpochs) public {
        if (endingTimestamp != 0) {
            require(block.timestamp < endingTimestamp, "Network has ended!");
        }

        cacheRewards(_startingEpoch + _numEpochs);
        uint256 mintAmount = calculateMintAmount(_startingEpoch, _numEpochs, msg.sender);
        for (uint256 i = 0; i < _numEpochs; i++) {
            epochUser[_startingEpoch + i][msg.sender] = 0;
        }

        _mint(msg.sender, mintAmount);
        emit Claimed(msg.sender, _startingEpoch, _numEpochs, mintAmount);
    }

    /**
     * @notice Allows a user to claim multiple epoch ranges.
     * @param _epochRanges Array of epoch ranges
     */
    function multiClaim(EpochRange[] calldata _epochRanges) external {
        for (uint256 i = 0; i < _epochRanges.length; i++) {
            claim(_epochRanges[i].startingEpoch, _epochRanges[i].numEpochs);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @inheritdoc IERC5267
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 14 of 20 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 17 of 20 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 18 of 20 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"contract IERC20","name":"_bethContract","type":"address"},{"internalType":"address","name":"_premineAddress","type":"address"},{"internalType":"uint256","name":"_premineAmount","type":"uint256"},{"internalType":"uint256","name":"_startingTimestamp","type":"uint256"},{"internalType":"uint256","name":"_endingTimestamp","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimant","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromEpoch","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"numEpochs","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalClaimed","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"participant","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromEpoch","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"numEpochs","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountPerEpoch","type":"uint256"}],"name":"Participated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountPerEpoch","type":"uint256"},{"internalType":"uint256","name":"_numEpochs","type":"uint256"}],"name":"approximate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bethContract","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"cacheRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"cachedReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cachedRewardEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cachedRewardsAccumulatedSum","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startingEpoch","type":"uint256"},{"internalType":"uint256","name":"_numEpochs","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"calculateMintAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_startingEpoch","type":"uint256"},{"internalType":"uint256","name":"_numEpochs","type":"uint256"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentEpoch","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fromEpoch","type":"uint256"},{"internalType":"uint256","name":"_numEpochs","type":"uint256"},{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint256","name":"_maxFound","type":"uint256"}],"name":"discoverRewards","outputs":[{"internalType":"uint256","name":"nextEpochToSearch","type":"uint256"},{"internalType":"uint256[]","name":"epochs","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"endingTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"epochTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"epochUser","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"since","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"info","outputs":[{"components":[{"internalType":"uint256","name":"totalWorm","type":"uint256"},{"internalType":"uint256","name":"totalBeth","type":"uint256"},{"internalType":"uint256","name":"currentEpoch","type":"uint256"},{"internalType":"uint256","name":"currentEpochReward","type":"uint256"},{"internalType":"uint256","name":"epochRemainingTime","type":"uint256"},{"internalType":"uint256","name":"since","type":"uint256"},{"internalType":"uint256[]","name":"userContribs","type":"uint256[]"},{"internalType":"uint256[]","name":"totalContribs","type":"uint256[]"}],"internalType":"struct WORM.Info","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"startingEpoch","type":"uint256"},{"internalType":"uint256","name":"numEpochs","type":"uint256"}],"internalType":"struct WORM.EpochRange[]","name":"_epochRanges","type":"tuple[]"}],"name":"multiApproximate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"startingEpoch","type":"uint256"},{"internalType":"uint256","name":"numEpochs","type":"uint256"}],"internalType":"struct WORM.EpochRange[]","name":"_epochRanges","type":"tuple[]"}],"name":"multiClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountPerEpoch","type":"uint256"},{"internalType":"uint256","name":"_numEpochs","type":"uint256"}],"name":"participate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"epoch","type":"uint256"}],"name":"rewardOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startingTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

6101c06040525f6008555f600a55348015610018575f5ffd5b50604051614662380380614662833981810160405281019061003a9190610731565b6040518060400160405280600581526020017f54574f524d000000000000000000000000000000000000000000000000000000815250806040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506040518060400160405280600581526020017f54574f524d0000000000000000000000000000000000000000000000000000008152506040518060400160405280600581526020017f54574f524d000000000000000000000000000000000000000000000000000000815250816003908161012291906109dc565b50806004908161013291906109dc565b5050506101496005836102b260201b90919060201c565b61012081815250506101656006826102b260201b90919060201c565b6101408181525050818051906020012060e08181525050808051906020012061010081815250504660a081815250506101a26102ff60201b60201c565b608081815250503073ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff16815250505050508473ffffffffffffffffffffffffffffffffffffffff166101608173ffffffffffffffffffffffffffffffffffffffff16815250505f82036102225742610224565b815b6101808181525050806101a081815250506802b5e3af16b188000060095f5f81526020019081526020015f20819055506802b5e3af16b1880000600a819055505f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff16146102a8576102a7848461035960201b60201c565b5b5050505050610d12565b5f6020835110156102d3576102cc836103de60201b60201c565b90506102f9565b826102e38361044360201b60201c565b5f0190816102f191906109dc565b5060ff5f1b90505b92915050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60e05161010051463060405160200161033e959493929190610ae1565b60405160208183030381529060405280519060200120905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036103c9575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016103c09190610b32565b60405180910390fd5b6103da5f838361044c60201b60201c565b5050565b5f5f829050601f8151111561042a57826040517f305a27a90000000000000000000000000000000000000000000000000000000081526004016104219190610bb1565b60405180910390fd5b80518161043690610bfe565b5f1c175f1b915050919050565b5f819050919050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361049c578060025f8282546104909190610c91565b9250508190555061056a565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610525578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161051c93929190610cc4565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036105b1578060025f82825403925050819055506105fb565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516106589190610cf9565b60405180910390a3505050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61069282610669565b9050919050565b5f6106a382610688565b9050919050565b6106b381610699565b81146106bd575f5ffd5b50565b5f815190506106ce816106aa565b92915050565b6106dd81610688565b81146106e7575f5ffd5b50565b5f815190506106f8816106d4565b92915050565b5f819050919050565b610710816106fe565b811461071a575f5ffd5b50565b5f8151905061072b81610707565b92915050565b5f5f5f5f5f60a0868803121561074a57610749610665565b5b5f610757888289016106c0565b9550506020610768888289016106ea565b94505060406107798882890161071d565b935050606061078a8882890161071d565b925050608061079b8882890161071d565b9150509295509295909350565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061082357607f821691505b602082108103610836576108356107df565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026108987fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8261085d565b6108a2868361085d565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6108dd6108d86108d3846106fe565b6108ba565b6106fe565b9050919050565b5f819050919050565b6108f6836108c3565b61090a610902826108e4565b848454610869565b825550505050565b5f5f905090565b610921610912565b61092c8184846108ed565b505050565b5b8181101561094f576109445f82610919565b600181019050610932565b5050565b601f821115610994576109658161083c565b61096e8461084e565b8101602085101561097d578190505b6109916109898561084e565b830182610931565b50505b505050565b5f82821c905092915050565b5f6109b45f1984600802610999565b1980831691505092915050565b5f6109cc83836109a5565b9150826002028217905092915050565b6109e5826107a8565b67ffffffffffffffff8111156109fe576109fd6107b2565b5b610a08825461080c565b610a13828285610953565b5f60209050601f831160018114610a44575f8415610a32578287015190505b610a3c85826109c1565b865550610aa3565b601f198416610a528661083c565b5f5b82811015610a7957848901518255600182019150602085019450602081019050610a54565b86831015610a965784890151610a92601f8916826109a5565b8355505b6001600288020188555050505b505050505050565b5f819050919050565b610abd81610aab565b82525050565b610acc816106fe565b82525050565b610adb81610688565b82525050565b5f60a082019050610af45f830188610ab4565b610b016020830187610ab4565b610b0e6040830186610ab4565b610b1b6060830185610ac3565b610b286080830184610ad2565b9695505050505050565b5f602082019050610b455f830184610ad2565b92915050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f610b83826107a8565b610b8d8185610b4b565b9350610b9d818560208601610b5b565b610ba681610b69565b840191505092915050565b5f6020820190508181035f830152610bc98184610b79565b905092915050565b5f81519050919050565b5f819050602082019050919050565b5f610bf58251610aab565b80915050919050565b5f610c0882610bd1565b82610c1284610bdb565b9050610c1d81610bea565b92506020821015610c5d57610c587fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8360200360080261085d565b831692505b5050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f610c9b826106fe565b9150610ca6836106fe565b9250828201905080821115610cbe57610cbd610c64565b5b92915050565b5f606082019050610cd75f830186610ad2565b610ce46020830185610ac3565b610cf16040830184610ac3565b949350505050565b5f602082019050610d0c5f830184610ac3565b92915050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516138a2610dc05f395f81816107b1015281816107d701528181610cf401528181611578015261159e01525f8181610fca01528181611030015281816111e4015261149b01525f818161094101528181610a8801526110cf01525f611db501525f611d7a01525f61232d01525f61230c01525f611c7801525f611cce01525f611cf701526138a25ff3fe608060405234801561000f575f5ffd5b50600436106101f9575f3560e01c80637441a49a11610118578063a9059cbb116100ab578063dd62ed3e1161007a578063dd62ed3e1461060a578063e0afdf1b1461063a578063e2a46af91461066a578063f22f708d14610686578063fe406507146106b6576101f9565b8063a9059cbb14610572578063c3490263146105a2578063d505accf146105be578063daa3770c146105da576101f9565b806384b0196e116100e757806384b0196e146104f4578063887862721461051857806395d89b4114610536578063965322cc14610554576101f9565b80637441a49a1461044657806376671808146104765780637b16a620146104945780637ecebe00146104c4576101f9565b80632bbbcaaa116101905780633f35dcc81161015f5780633f35dcc8146103ab5780635e5294b7146103c75780636cc81c7e146103e557806370a0823114610416576101f9565b80632bbbcaaa14610321578063313ce567146103515780633644e5151461036f57806337b5fcfa1461038d576101f9565b806318160ddd116101cc57806318160ddd14610285578063194b822b146102a35780631e0e8489146102c157806323b872dd146102f1576101f9565b806306fdde03146101fd57806307621eca1461021b578063095ea7b314610239578063129874aa14610269575b5f5ffd5b6102056106e6565b6040516102129190612822565b60405180910390f35b610223610776565b604051610230919061285a565b60405180910390f35b610253600480360381019061024e91906128ff565b61078c565b6040516102609190612957565b60405180910390f35b610283600480360381019061027e9190612970565b6107ae565b005b61028d610a7d565b60405161029a919061285a565b60405180910390f35b6102ab610a86565b6040516102b89190612a09565b60405180910390f35b6102db60048036038101906102d69190612a22565b610aaa565b6040516102e8919061285a565b60405180910390f35b61030b60048036038101906103069190612a4d565b610abf565b6040516103189190612957565b60405180910390f35b61033b60048036038101906103369190612a9d565b610aed565b604051610348919061285a565b60405180910390f35b610359610c2a565b6040516103669190612b08565b60405180910390f35b610377610c32565b6040516103849190612b39565b60405180910390f35b610395610c40565b6040516103a2919061285a565b60405180910390f35b6103c560048036038101906103c09190612a22565b610c46565b005b6103cf610cf2565b6040516103dc919061285a565b60405180910390f35b6103ff60048036038101906103fa9190612b52565b610d16565b60405161040d929190612c6d565b60405180910390f35b610430600480360381019061042b9190612c9b565b610e46565b60405161043d919061285a565b60405180910390f35b610460600480360381019061045b9190612d27565b610e8b565b60405161046d919061285a565b60405180910390f35b61047e610fc7565b60405161048b919061285a565b60405180910390f35b6104ae60048036038101906104a99190612d72565b611069565b6040516104bb9190612ee2565b60405180910390f35b6104de60048036038101906104d99190612c9b565b6113e3565b6040516104eb919061285a565b60405180910390f35b6104fc6113f4565b60405161050f9796959493929190612f4b565b60405180910390f35b610520611499565b60405161052d919061285a565b60405180910390f35b61053e6114bd565b60405161054b9190612822565b60405180910390f35b61055c61154d565b604051610569919061285a565b60405180910390f35b61058c600480360381019061058791906128ff565b611553565b6040516105999190612957565b60405180910390f35b6105bc60048036038101906105b79190612970565b611575565b005b6105d860048036038101906105d39190613021565b6116f9565b005b6105f460048036038101906105ef9190612a22565b61183e565b604051610601919061285a565b60405180910390f35b610624600480360381019061061f91906130be565b6118cb565b604051610631919061285a565b60405180910390f35b610654600480360381019061064f9190612970565b61194d565b604051610661919061285a565b60405180910390f35b610684600480360381019061067f9190612d27565b611a41565b005b6106a0600480360381019061069b91906130fc565b611aa4565b6040516106ad919061285a565b60405180910390f35b6106d060048036038101906106cb9190612a22565b611ac4565b6040516106dd919061285a565b60405180910390f35b6060600380546106f590613167565b80601f016020809104026020016040519081016040528092919081815260200182805461072190613167565b801561076c5780601f106107435761010080835404028352916020019161076c565b820191905f5260205f20905b81548152906001019060200180831161074f57829003601f168201915b5050505050905090565b5f610787610782610fc7565b61183e565b905090565b5f5f610796611ad9565b90506107a3818585611ae0565b600191505092915050565b5f7f000000000000000000000000000000000000000000000000000000000000000014610838577f00000000000000000000000000000000000000000000000000000000000000004210610837576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161082e906131e1565b60405180910390fd5b5b5f810361087a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161087190613249565b60405180910390fd5b5f610883610fc7565b90505f5f90505b8281101561093e5783600b5f83856108a29190613294565b81526020019081526020015f205f8282546108bd9190613294565b9250508190555083600c5f83856108d49190613294565b81526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825461092a9190613294565b92505081905550808060010191505061088a565b507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166323b872dd3330868661098991906132c7565b6040518463ffffffff1660e01b81526004016109a793929190613308565b6020604051808303815f875af11580156109c3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109e79190613367565b610a26576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1d906133dc565b60405180910390fd5b3373ffffffffffffffffffffffffffffffffffffffff167f33e7a0de3a71e60935a6928f77828f7666383b7abd7ea9ef92b6c1f63f071d28828486604051610a70939291906133fa565b60405180910390a2505050565b5f600254905090565b7f000000000000000000000000000000000000000000000000000000000000000081565b600b602052805f5260405f205f915090505481565b5f5f610ac9611ad9565b9050610ad6858285611af2565b610ae1858585611b85565b60019150509392505050565b5f610af6610fc7565b8385610b029190613294565b1115610b43576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b3a90613479565b60405180910390fd5b5f5f90505f5f90505b84811015610c1e575f600b5f8389610b649190613294565b81526020019081526020015f205490505f811115610c10575f600c5f848a610b8c9190613294565b81526020019081526020015f205f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490508181610bed858b610be89190613294565b61183e565b610bf791906132c7565b610c0191906134c4565b84610c0c9190613294565b9350505b508080600101915050610b4c565b50809150509392505050565b5f6012905090565b5f610c3b611c75565b905090565b60085481565b5f60085490505f60095f8381526020019081526020015f205490505f5f90505b83831015610ccd57662386f26fc10000662386eac062d97383610c8991906132c7565b610c9391906134c4565b9150600183610ca29190613294565b92508160095f8581526020019081526020015f20819055508181610cc69190613294565b9050610c66565b8260088190555080600a5f828254610ce59190613294565b9250508190555050505050565b7f000000000000000000000000000000000000000000000000000000000000000081565b5f60608267ffffffffffffffff811115610d3357610d326134f4565b5b604051908082528060200260200182016040528015610d615781602001602082028036833780820191505090505b5090505f5f90505f8688610d759190613294565b90505f8890505b81811015610e34575f600c5f8381526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20541115610e215780848481518110610dec57610deb613521565b5b6020026020010181815250508280610e039061354e565b935050858310610e20578080610e189061354e565b915050610e34565b5b8080610e2c9061354e565b915050610d7c565b82845280945050505094509492505050565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f5f5f90505f5f90505b84849050811015610fbc575f811115610f61578484600183610eb79190613595565b818110610ec757610ec6613521565b5b905060400201602001358585600184610ee09190613595565b818110610ef057610eef613521565b5b9050604002015f0135610f039190613294565b858583818110610f1657610f15613521565b5b9050604002015f01351015610f60576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f5790613612565b60405180910390fd5b5b610fa2858583818110610f7757610f76613521565b5b9050604002015f0135868684818110610f9357610f92613521565b5b9050604002016020013561194d565b82610fad9190613294565b91508080600101915050610e95565b508091505092915050565b5f7f000000000000000000000000000000000000000000000000000000000000000042101561102b576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110229061367a565b60405180910390fd5b6102587f00000000000000000000000000000000000000000000000000000000000000004261105a9190613595565b61106491906134c4565b905090565b611071612773565b5f8314801561107f57505f82145b156110cc575f61108d610fc7565b9050600581101561109e575f6110ac565b6005816110ab9190613595565b5b9350600560026110bc91906132c7565b60016110c89190613294565b9250505b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611136573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061115a91906136ac565b90505f3073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111ca91906136ac565b90505f6102586111d8610fc7565b6111e291906132c7565b7f00000000000000000000000000000000000000000000000000000000000000004261120e9190613595565b6112189190613595565b6102586112259190613595565b90505f8567ffffffffffffffff811115611242576112416134f4565b5b6040519080825280602002602001820160405280156112705781602001602082028036833780820191505090505b5090505f8667ffffffffffffffff81111561128e5761128d6134f4565b5b6040519080825280602002602001820160405280156112bc5781602001602082028036833780820191505090505b5090505f5f90505b8781101561138c57600c5f8a836112db9190613294565b81526020019081526020015f205f8b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483828151811061133757611336613521565b5b602002602001018181525050600b5f8a836113529190613294565b81526020019081526020015f205482828151811061137357611372613521565b5b60200260200101818152505080806001019150506112c4565b506040518061010001604052808581526020018681526020016113ad610fc7565b81526020016113ba610776565b815260200184815260200189815260200183815260200182815250955050505050509392505050565b5f6113ed82611d2b565b9050919050565b5f6060805f5f5f6060611405611d71565b61140d611dac565b46305f5f1b5f67ffffffffffffffff81111561142c5761142b6134f4565b5b60405190808252806020026020018201604052801561145a5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b7f000000000000000000000000000000000000000000000000000000000000000081565b6060600480546114cc90613167565b80601f01602080910402602001604051908101604052809291908181526020018280546114f890613167565b80156115435780601f1061151a57610100808354040283529160200191611543565b820191905f5260205f20905b81548152906001019060200180831161152657829003601f168201915b5050505050905090565b600a5481565b5f5f61155d611ad9565b905061156a818585611b85565b600191505092915050565b5f7f0000000000000000000000000000000000000000000000000000000000000000146115ff577f000000000000000000000000000000000000000000000000000000000000000042106115fe576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115f5906131e1565b60405180910390fd5b5b611613818361160e9190613294565b610c46565b5f61161f838333610aed565b90505f5f90505b82811015611697575f600c5f838761163e9190613294565b81526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508080600101915050611626565b506116a23382611de7565b3373ffffffffffffffffffffffffffffffffffffffff167f9cdcf2f7714cca3508c7f0110b04a90a80a3a8dd0e35de99689db74d28c5383e8484846040516116ec939291906133fa565b60405180910390a2505050565b8342111561173e57836040517f62791302000000000000000000000000000000000000000000000000000000008152600401611735919061285a565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988888861176c8c611e66565b89604051602001611782969594939291906136d7565b6040516020818303038152906040528051906020012090505f6117a482611eb9565b90505f6117b382878787611ed2565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461182757808a6040517f4b800e4600000000000000000000000000000000000000000000000000000000815260040161181e929190613736565b60405180910390fd5b6118328a8a8a611ae0565b50505050505050505050565b5f60085482116118615760095f8381526020019081526020015f205490506118c6565b5f60085490505f60095f8381526020019081526020015f205490505b838210156118c057662386f26fc10000662386eac062d973826118a091906132c7565b6118aa91906134c4565b90506001826118b99190613294565b915061187d565b80925050505b919050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f5f5f90505f61195b610fc7565b90505f5f90505b84811015611a35575f81836119779190613294565b90505f6119838261183e565b90505f88600c5f8581526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546119de9190613294565b90505f89600b5f8681526020019081526020015f20546119fe9190613294565b9050808284611a0d91906132c7565b611a1791906134c4565b87611a229190613294565b9650505050508080600101915050611962565b50819250505092915050565b5f5f90505b82829050811015611a9f57611a92838383818110611a6757611a66613521565b5b9050604002015f0135848484818110611a8357611a82613521565b5b90506040020160200135611575565b8080600101915050611a46565b505050565b600c602052815f5260405f20602052805f5260405f205f91509150505481565b6009602052805f5260405f205f915090505481565b5f33905090565b611aed8383836001611f00565b505050565b5f611afd84846118cb565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811015611b7f5781811015611b70578281836040517ffb8f41b2000000000000000000000000000000000000000000000000000000008152600401611b679392919061375d565b60405180910390fd5b611b7e84848484035f611f00565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611bf5575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401611bec9190613792565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611c65575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611c5c9190613792565b60405180910390fd5b611c708383836120cf565b505050565b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff16148015611cf057507f000000000000000000000000000000000000000000000000000000000000000046145b15611d1d577f00000000000000000000000000000000000000000000000000000000000000009050611d28565b611d256122e8565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060611da760057f000000000000000000000000000000000000000000000000000000000000000061237d90919063ffffffff16565b905090565b6060611de260067f000000000000000000000000000000000000000000000000000000000000000061237d90919063ffffffff16565b905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e57575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611e4e9190613792565b60405180910390fd5b611e625f83836120cf565b5050565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f611ecb611ec5611c75565b8361242a565b9050919050565b5f5f5f5f611ee28888888861246a565b925092509250611ef28282612551565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603611f70575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401611f679190613792565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611fe0575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401611fd79190613792565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555080156120c9578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516120c0919061285a565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361211f578060025f8282546121139190613294565b925050819055506121ed565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050818110156121a8578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161219f9392919061375d565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603612234578060025f828254039250508190555061227e565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516122db919061285a565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f00000000000000000000000000000000000000000000000000000000000000007f000000000000000000000000000000000000000000000000000000000000000046306040516020016123629594939291906137ab565b60405160208183030381529060405280519060200120905090565b606060ff5f1b831461239957612392836126b3565b9050612424565b8180546123a590613167565b80601f01602080910402602001604051908101604052809291908181526020018280546123d190613167565b801561241c5780601f106123f35761010080835404028352916020019161241c565b820191905f5260205f20905b8154815290600101906020018083116123ff57829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c11156124a6575f600385925092509250612547565b5f6001888888886040515f81526020016040526040516124c994939291906137fc565b6020604051602081039080840390855afa1580156124e9573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361253a575f60015f5f1b93509350935050612547565b805f5f5f1b935093509350505b9450945094915050565b5f60038111156125645761256361383f565b5b8260038111156125775761257661383f565b5b03156126af57600160038111156125915761259061383f565b5b8260038111156125a4576125a361383f565b5b036125db576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156125ef576125ee61383f565b5b8260038111156126025761260161383f565b5b0361264657805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161263d919061285a565b60405180910390fd5b6003808111156126595761265861383f565b5b82600381111561266c5761266b61383f565b5b036126ae57806040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004016126a59190612b39565b60405180910390fd5b5b5050565b60605f6126bf83612725565b90505f602067ffffffffffffffff8111156126dd576126dc6134f4565b5b6040519080825280601f01601f19166020018201604052801561270f5781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f5f60ff835f1c169050601f81111561276a576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b6040518061010001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f815260200160608152602001606081525090565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f6127f4826127b2565b6127fe81856127bc565b935061280e8185602086016127cc565b612817816127da565b840191505092915050565b5f6020820190508181035f83015261283a81846127ea565b905092915050565b5f819050919050565b61285481612842565b82525050565b5f60208201905061286d5f83018461284b565b92915050565b5f5ffd5b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6128a48261287b565b9050919050565b6128b48161289a565b81146128be575f5ffd5b50565b5f813590506128cf816128ab565b92915050565b6128de81612842565b81146128e8575f5ffd5b50565b5f813590506128f9816128d5565b92915050565b5f5f6040838503121561291557612914612873565b5b5f612922858286016128c1565b9250506020612933858286016128eb565b9150509250929050565b5f8115159050919050565b6129518161293d565b82525050565b5f60208201905061296a5f830184612948565b92915050565b5f5f6040838503121561298657612985612873565b5b5f612993858286016128eb565b92505060206129a4858286016128eb565b9150509250929050565b5f819050919050565b5f6129d16129cc6129c78461287b565b6129ae565b61287b565b9050919050565b5f6129e2826129b7565b9050919050565b5f6129f3826129d8565b9050919050565b612a03816129e9565b82525050565b5f602082019050612a1c5f8301846129fa565b92915050565b5f60208284031215612a3757612a36612873565b5b5f612a44848285016128eb565b91505092915050565b5f5f5f60608486031215612a6457612a63612873565b5b5f612a71868287016128c1565b9350506020612a82868287016128c1565b9250506040612a93868287016128eb565b9150509250925092565b5f5f5f60608486031215612ab457612ab3612873565b5b5f612ac1868287016128eb565b9350506020612ad2868287016128eb565b9250506040612ae3868287016128c1565b9150509250925092565b5f60ff82169050919050565b612b0281612aed565b82525050565b5f602082019050612b1b5f830184612af9565b92915050565b5f819050919050565b612b3381612b21565b82525050565b5f602082019050612b4c5f830184612b2a565b92915050565b5f5f5f5f60808587031215612b6a57612b69612873565b5b5f612b77878288016128eb565b9450506020612b88878288016128eb565b9350506040612b99878288016128c1565b9250506060612baa878288016128eb565b91505092959194509250565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612be881612842565b82525050565b5f612bf98383612bdf565b60208301905092915050565b5f602082019050919050565b5f612c1b82612bb6565b612c258185612bc0565b9350612c3083612bd0565b805f5b83811015612c60578151612c478882612bee565b9750612c5283612c05565b925050600181019050612c33565b5085935050505092915050565b5f604082019050612c805f83018561284b565b8181036020830152612c928184612c11565b90509392505050565b5f60208284031215612cb057612caf612873565b5b5f612cbd848285016128c1565b91505092915050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83601f840112612ce757612ce6612cc6565b5b8235905067ffffffffffffffff811115612d0457612d03612cca565b5b602083019150836040820283011115612d2057612d1f612cce565b5b9250929050565b5f5f60208385031215612d3d57612d3c612873565b5b5f83013567ffffffffffffffff811115612d5a57612d59612877565b5b612d6685828601612cd2565b92509250509250929050565b5f5f5f60608486031215612d8957612d88612873565b5b5f612d96868287016128c1565b9350506020612da7868287016128eb565b9250506040612db8868287016128eb565b9150509250925092565b5f82825260208201905092915050565b5f612ddc82612bb6565b612de68185612dc2565b9350612df183612bd0565b805f5b83811015612e21578151612e088882612bee565b9750612e1383612c05565b925050600181019050612df4565b5085935050505092915050565b5f61010083015f830151612e445f860182612bdf565b506020830151612e576020860182612bdf565b506040830151612e6a6040860182612bdf565b506060830151612e7d6060860182612bdf565b506080830151612e906080860182612bdf565b5060a0830151612ea360a0860182612bdf565b5060c083015184820360c0860152612ebb8282612dd2565b91505060e083015184820360e0860152612ed58282612dd2565b9150508091505092915050565b5f6020820190508181035f830152612efa8184612e2e565b905092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b612f3681612f02565b82525050565b612f458161289a565b82525050565b5f60e082019050612f5e5f83018a612f2d565b8181036020830152612f7081896127ea565b90508181036040830152612f8481886127ea565b9050612f93606083018761284b565b612fa06080830186612f3c565b612fad60a0830185612b2a565b81810360c0830152612fbf8184612c11565b905098975050505050505050565b612fd681612aed565b8114612fe0575f5ffd5b50565b5f81359050612ff181612fcd565b92915050565b61300081612b21565b811461300a575f5ffd5b50565b5f8135905061301b81612ff7565b92915050565b5f5f5f5f5f5f5f60e0888a03121561303c5761303b612873565b5b5f6130498a828b016128c1565b975050602061305a8a828b016128c1565b965050604061306b8a828b016128eb565b955050606061307c8a828b016128eb565b945050608061308d8a828b01612fe3565b93505060a061309e8a828b0161300d565b92505060c06130af8a828b0161300d565b91505092959891949750929550565b5f5f604083850312156130d4576130d3612873565b5b5f6130e1858286016128c1565b92505060206130f2858286016128c1565b9150509250929050565b5f5f6040838503121561311257613111612873565b5b5f61311f858286016128eb565b9250506020613130858286016128c1565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061317e57607f821691505b6020821081036131915761319061313a565b5b50919050565b7f4e6574776f726b2068617320656e6465642100000000000000000000000000005f82015250565b5f6131cb6012836127bc565b91506131d682613197565b602082019050919050565b5f6020820190508181035f8301526131f8816131bf565b9050919050565b7f496e76616c69642065706f6368206e756d6265722e00000000000000000000005f82015250565b5f6132336015836127bc565b915061323e826131ff565b602082019050919050565b5f6020820190508181035f83015261326081613227565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61329e82612842565b91506132a983612842565b92508282019050808211156132c1576132c0613267565b5b92915050565b5f6132d182612842565b91506132dc83612842565b92508282026132ea81612842565b9150828204841483151761330157613300613267565b5b5092915050565b5f60608201905061331b5f830186612f3c565b6133286020830185612f3c565b613335604083018461284b565b949350505050565b6133468161293d565b8114613350575f5ffd5b50565b5f815190506133618161333d565b92915050565b5f6020828403121561337c5761337b612873565b5b5f61338984828501613353565b91505092915050565b7f54460000000000000000000000000000000000000000000000000000000000005f82015250565b5f6133c66002836127bc565b91506133d182613392565b602082019050919050565b5f6020820190508181035f8301526133f3816133ba565b9050919050565b5f60608201905061340d5f83018661284b565b61341a602083018561284b565b613427604083018461284b565b949350505050565b7f43616e6e6f7420636c61696d20616e206f6e676f696e672065706f63682100005f82015250565b5f613463601e836127bc565b915061346e8261342f565b602082019050919050565b5f6020820190508181035f83015261349081613457565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6134ce82612842565b91506134d983612842565b9250826134e9576134e8613497565b5b828204905092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f61355882612842565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361358a57613589613267565b5b600182019050919050565b5f61359f82612842565b91506135aa83612842565b92508282039050818111156135c2576135c1613267565b5b92915050565b7f52616e676573206f7665726c61702100000000000000000000000000000000005f82015250565b5f6135fc600f836127bc565b9150613607826135c8565b602082019050919050565b5f6020820190508181035f830152613629816135f0565b9050919050565b7f4d696e696e6720686173206e6f742073746172746564207965742100000000005f82015250565b5f613664601b836127bc565b915061366f82613630565b602082019050919050565b5f6020820190508181035f83015261369181613658565b9050919050565b5f815190506136a6816128d5565b92915050565b5f602082840312156136c1576136c0612873565b5b5f6136ce84828501613698565b91505092915050565b5f60c0820190506136ea5f830189612b2a565b6136f76020830188612f3c565b6137046040830187612f3c565b613711606083018661284b565b61371e608083018561284b565b61372b60a083018461284b565b979650505050505050565b5f6040820190506137495f830185612f3c565b6137566020830184612f3c565b9392505050565b5f6060820190506137705f830186612f3c565b61377d602083018561284b565b61378a604083018461284b565b949350505050565b5f6020820190506137a55f830184612f3c565b92915050565b5f60a0820190506137be5f830188612b2a565b6137cb6020830187612b2a565b6137d86040830186612b2a565b6137e5606083018561284b565b6137f26080830184612f3c565b9695505050505050565b5f60808201905061380f5f830187612b2a565b61381c6020830186612af9565b6138296040830185612b2a565b6138366060830184612b2a565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122077a039e5bbf9e3712e69b5620f29e375776d3750ace5508db6d8742afe331ab064736f6c634300081c00330000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf80000000000000000000000008dc77b145d7009752d6947b3cf6d983cafa1c0bb000000000000000000000000000000000000000000000002b5e3af16b18800000000000000000000000000000000000000000000000000000000000069905cb80000000000000000000000000000000000000000000000000000000069999738

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106101f9575f3560e01c80637441a49a11610118578063a9059cbb116100ab578063dd62ed3e1161007a578063dd62ed3e1461060a578063e0afdf1b1461063a578063e2a46af91461066a578063f22f708d14610686578063fe406507146106b6576101f9565b8063a9059cbb14610572578063c3490263146105a2578063d505accf146105be578063daa3770c146105da576101f9565b806384b0196e116100e757806384b0196e146104f4578063887862721461051857806395d89b4114610536578063965322cc14610554576101f9565b80637441a49a1461044657806376671808146104765780637b16a620146104945780637ecebe00146104c4576101f9565b80632bbbcaaa116101905780633f35dcc81161015f5780633f35dcc8146103ab5780635e5294b7146103c75780636cc81c7e146103e557806370a0823114610416576101f9565b80632bbbcaaa14610321578063313ce567146103515780633644e5151461036f57806337b5fcfa1461038d576101f9565b806318160ddd116101cc57806318160ddd14610285578063194b822b146102a35780631e0e8489146102c157806323b872dd146102f1576101f9565b806306fdde03146101fd57806307621eca1461021b578063095ea7b314610239578063129874aa14610269575b5f5ffd5b6102056106e6565b6040516102129190612822565b60405180910390f35b610223610776565b604051610230919061285a565b60405180910390f35b610253600480360381019061024e91906128ff565b61078c565b6040516102609190612957565b60405180910390f35b610283600480360381019061027e9190612970565b6107ae565b005b61028d610a7d565b60405161029a919061285a565b60405180910390f35b6102ab610a86565b6040516102b89190612a09565b60405180910390f35b6102db60048036038101906102d69190612a22565b610aaa565b6040516102e8919061285a565b60405180910390f35b61030b60048036038101906103069190612a4d565b610abf565b6040516103189190612957565b60405180910390f35b61033b60048036038101906103369190612a9d565b610aed565b604051610348919061285a565b60405180910390f35b610359610c2a565b6040516103669190612b08565b60405180910390f35b610377610c32565b6040516103849190612b39565b60405180910390f35b610395610c40565b6040516103a2919061285a565b60405180910390f35b6103c560048036038101906103c09190612a22565b610c46565b005b6103cf610cf2565b6040516103dc919061285a565b60405180910390f35b6103ff60048036038101906103fa9190612b52565b610d16565b60405161040d929190612c6d565b60405180910390f35b610430600480360381019061042b9190612c9b565b610e46565b60405161043d919061285a565b60405180910390f35b610460600480360381019061045b9190612d27565b610e8b565b60405161046d919061285a565b60405180910390f35b61047e610fc7565b60405161048b919061285a565b60405180910390f35b6104ae60048036038101906104a99190612d72565b611069565b6040516104bb9190612ee2565b60405180910390f35b6104de60048036038101906104d99190612c9b565b6113e3565b6040516104eb919061285a565b60405180910390f35b6104fc6113f4565b60405161050f9796959493929190612f4b565b60405180910390f35b610520611499565b60405161052d919061285a565b60405180910390f35b61053e6114bd565b60405161054b9190612822565b60405180910390f35b61055c61154d565b604051610569919061285a565b60405180910390f35b61058c600480360381019061058791906128ff565b611553565b6040516105999190612957565b60405180910390f35b6105bc60048036038101906105b79190612970565b611575565b005b6105d860048036038101906105d39190613021565b6116f9565b005b6105f460048036038101906105ef9190612a22565b61183e565b604051610601919061285a565b60405180910390f35b610624600480360381019061061f91906130be565b6118cb565b604051610631919061285a565b60405180910390f35b610654600480360381019061064f9190612970565b61194d565b604051610661919061285a565b60405180910390f35b610684600480360381019061067f9190612d27565b611a41565b005b6106a0600480360381019061069b91906130fc565b611aa4565b6040516106ad919061285a565b60405180910390f35b6106d060048036038101906106cb9190612a22565b611ac4565b6040516106dd919061285a565b60405180910390f35b6060600380546106f590613167565b80601f016020809104026020016040519081016040528092919081815260200182805461072190613167565b801561076c5780601f106107435761010080835404028352916020019161076c565b820191905f5260205f20905b81548152906001019060200180831161074f57829003601f168201915b5050505050905090565b5f610787610782610fc7565b61183e565b905090565b5f5f610796611ad9565b90506107a3818585611ae0565b600191505092915050565b5f7f000000000000000000000000000000000000000000000000000000006999973814610838577f00000000000000000000000000000000000000000000000000000000699997384210610837576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161082e906131e1565b60405180910390fd5b5b5f810361087a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161087190613249565b60405180910390fd5b5f610883610fc7565b90505f5f90505b8281101561093e5783600b5f83856108a29190613294565b81526020019081526020015f205f8282546108bd9190613294565b9250508190555083600c5f83856108d49190613294565b81526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825461092a9190613294565b92505081905550808060010191505061088a565b507f0000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf873ffffffffffffffffffffffffffffffffffffffff166323b872dd3330868661098991906132c7565b6040518463ffffffff1660e01b81526004016109a793929190613308565b6020604051808303815f875af11580156109c3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109e79190613367565b610a26576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1d906133dc565b60405180910390fd5b3373ffffffffffffffffffffffffffffffffffffffff167f33e7a0de3a71e60935a6928f77828f7666383b7abd7ea9ef92b6c1f63f071d28828486604051610a70939291906133fa565b60405180910390a2505050565b5f600254905090565b7f0000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf881565b600b602052805f5260405f205f915090505481565b5f5f610ac9611ad9565b9050610ad6858285611af2565b610ae1858585611b85565b60019150509392505050565b5f610af6610fc7565b8385610b029190613294565b1115610b43576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b3a90613479565b60405180910390fd5b5f5f90505f5f90505b84811015610c1e575f600b5f8389610b649190613294565b81526020019081526020015f205490505f811115610c10575f600c5f848a610b8c9190613294565b81526020019081526020015f205f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490508181610bed858b610be89190613294565b61183e565b610bf791906132c7565b610c0191906134c4565b84610c0c9190613294565b9350505b508080600101915050610b4c565b50809150509392505050565b5f6012905090565b5f610c3b611c75565b905090565b60085481565b5f60085490505f60095f8381526020019081526020015f205490505f5f90505b83831015610ccd57662386f26fc10000662386eac062d97383610c8991906132c7565b610c9391906134c4565b9150600183610ca29190613294565b92508160095f8581526020019081526020015f20819055508181610cc69190613294565b9050610c66565b8260088190555080600a5f828254610ce59190613294565b9250508190555050505050565b7f000000000000000000000000000000000000000000000000000000006999973881565b5f60608267ffffffffffffffff811115610d3357610d326134f4565b5b604051908082528060200260200182016040528015610d615781602001602082028036833780820191505090505b5090505f5f90505f8688610d759190613294565b90505f8890505b81811015610e34575f600c5f8381526020019081526020015f205f8973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20541115610e215780848481518110610dec57610deb613521565b5b6020026020010181815250508280610e039061354e565b935050858310610e20578080610e189061354e565b915050610e34565b5b8080610e2c9061354e565b915050610d7c565b82845280945050505094509492505050565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f5f5f90505f5f90505b84849050811015610fbc575f811115610f61578484600183610eb79190613595565b818110610ec757610ec6613521565b5b905060400201602001358585600184610ee09190613595565b818110610ef057610eef613521565b5b9050604002015f0135610f039190613294565b858583818110610f1657610f15613521565b5b9050604002015f01351015610f60576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f5790613612565b60405180910390fd5b5b610fa2858583818110610f7757610f76613521565b5b9050604002015f0135868684818110610f9357610f92613521565b5b9050604002016020013561194d565b82610fad9190613294565b91508080600101915050610e95565b508091505092915050565b5f7f0000000000000000000000000000000000000000000000000000000069905cb842101561102b576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110229061367a565b60405180910390fd5b6102587f0000000000000000000000000000000000000000000000000000000069905cb84261105a9190613595565b61106491906134c4565b905090565b611071612773565b5f8314801561107f57505f82145b156110cc575f61108d610fc7565b9050600581101561109e575f6110ac565b6005816110ab9190613595565b5b9350600560026110bc91906132c7565b60016110c89190613294565b9250505b5f7f0000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf873ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611136573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061115a91906136ac565b90505f3073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156111a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111ca91906136ac565b90505f6102586111d8610fc7565b6111e291906132c7565b7f0000000000000000000000000000000000000000000000000000000069905cb84261120e9190613595565b6112189190613595565b6102586112259190613595565b90505f8567ffffffffffffffff811115611242576112416134f4565b5b6040519080825280602002602001820160405280156112705781602001602082028036833780820191505090505b5090505f8667ffffffffffffffff81111561128e5761128d6134f4565b5b6040519080825280602002602001820160405280156112bc5781602001602082028036833780820191505090505b5090505f5f90505b8781101561138c57600c5f8a836112db9190613294565b81526020019081526020015f205f8b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483828151811061133757611336613521565b5b602002602001018181525050600b5f8a836113529190613294565b81526020019081526020015f205482828151811061137357611372613521565b5b60200260200101818152505080806001019150506112c4565b506040518061010001604052808581526020018681526020016113ad610fc7565b81526020016113ba610776565b815260200184815260200189815260200183815260200182815250955050505050509392505050565b5f6113ed82611d2b565b9050919050565b5f6060805f5f5f6060611405611d71565b61140d611dac565b46305f5f1b5f67ffffffffffffffff81111561142c5761142b6134f4565b5b60405190808252806020026020018201604052801561145a5781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b7f0000000000000000000000000000000000000000000000000000000069905cb881565b6060600480546114cc90613167565b80601f01602080910402602001604051908101604052809291908181526020018280546114f890613167565b80156115435780601f1061151a57610100808354040283529160200191611543565b820191905f5260205f20905b81548152906001019060200180831161152657829003601f168201915b5050505050905090565b600a5481565b5f5f61155d611ad9565b905061156a818585611b85565b600191505092915050565b5f7f0000000000000000000000000000000000000000000000000000000069999738146115ff577f000000000000000000000000000000000000000000000000000000006999973842106115fe576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115f5906131e1565b60405180910390fd5b5b611613818361160e9190613294565b610c46565b5f61161f838333610aed565b90505f5f90505b82811015611697575f600c5f838761163e9190613294565b81526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508080600101915050611626565b506116a23382611de7565b3373ffffffffffffffffffffffffffffffffffffffff167f9cdcf2f7714cca3508c7f0110b04a90a80a3a8dd0e35de99689db74d28c5383e8484846040516116ec939291906133fa565b60405180910390a2505050565b8342111561173e57836040517f62791302000000000000000000000000000000000000000000000000000000008152600401611735919061285a565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988888861176c8c611e66565b89604051602001611782969594939291906136d7565b6040516020818303038152906040528051906020012090505f6117a482611eb9565b90505f6117b382878787611ed2565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461182757808a6040517f4b800e4600000000000000000000000000000000000000000000000000000000815260040161181e929190613736565b60405180910390fd5b6118328a8a8a611ae0565b50505050505050505050565b5f60085482116118615760095f8381526020019081526020015f205490506118c6565b5f60085490505f60095f8381526020019081526020015f205490505b838210156118c057662386f26fc10000662386eac062d973826118a091906132c7565b6118aa91906134c4565b90506001826118b99190613294565b915061187d565b80925050505b919050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f5f5f90505f61195b610fc7565b90505f5f90505b84811015611a35575f81836119779190613294565b90505f6119838261183e565b90505f88600c5f8581526020019081526020015f205f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546119de9190613294565b90505f89600b5f8681526020019081526020015f20546119fe9190613294565b9050808284611a0d91906132c7565b611a1791906134c4565b87611a229190613294565b9650505050508080600101915050611962565b50819250505092915050565b5f5f90505b82829050811015611a9f57611a92838383818110611a6757611a66613521565b5b9050604002015f0135848484818110611a8357611a82613521565b5b90506040020160200135611575565b8080600101915050611a46565b505050565b600c602052815f5260405f20602052805f5260405f205f91509150505481565b6009602052805f5260405f205f915090505481565b5f33905090565b611aed8383836001611f00565b505050565b5f611afd84846118cb565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811015611b7f5781811015611b70578281836040517ffb8f41b2000000000000000000000000000000000000000000000000000000008152600401611b679392919061375d565b60405180910390fd5b611b7e84848484035f611f00565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611bf5575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401611bec9190613792565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611c65575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611c5c9190613792565b60405180910390fd5b611c708383836120cf565b505050565b5f7f0000000000000000000000000d2e09d2abf22ed938fadaa306ccd48329e0977473ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff16148015611cf057507f000000000000000000000000000000000000000000000000000000000000000146145b15611d1d577fc5c3aa9cefa65eea121ea513d16b879943e4c05dbcb5b9d797c3cf98dcd28fae9050611d28565b611d256122e8565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060611da760057f54574f524d00000000000000000000000000000000000000000000000000000561237d90919063ffffffff16565b905090565b6060611de260067f310000000000000000000000000000000000000000000000000000000000000161237d90919063ffffffff16565b905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e57575f6040517fec442f05000000000000000000000000000000000000000000000000000000008152600401611e4e9190613792565b60405180910390fd5b611e625f83836120cf565b5050565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f611ecb611ec5611c75565b8361242a565b9050919050565b5f5f5f5f611ee28888888861246a565b925092509250611ef28282612551565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603611f70575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401611f679190613792565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611fe0575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401611fd79190613792565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555080156120c9578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516120c0919061285a565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361211f578060025f8282546121139190613294565b925050819055506121ed565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050818110156121a8578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161219f9392919061375d565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603612234578060025f828254039250508190555061227e565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516122db919061285a565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f08b480c7da3709b05397882fe427bbac30bf8ff63c5d71d9faf599b9293766497fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc646306040516020016123629594939291906137ab565b60405160208183030381529060405280519060200120905090565b606060ff5f1b831461239957612392836126b3565b9050612424565b8180546123a590613167565b80601f01602080910402602001604051908101604052809291908181526020018280546123d190613167565b801561241c5780601f106123f35761010080835404028352916020019161241c565b820191905f5260205f20905b8154815290600101906020018083116123ff57829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c11156124a6575f600385925092509250612547565b5f6001888888886040515f81526020016040526040516124c994939291906137fc565b6020604051602081039080840390855afa1580156124e9573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361253a575f60015f5f1b93509350935050612547565b805f5f5f1b935093509350505b9450945094915050565b5f60038111156125645761256361383f565b5b8260038111156125775761257661383f565b5b03156126af57600160038111156125915761259061383f565b5b8260038111156125a4576125a361383f565b5b036125db576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156125ef576125ee61383f565b5b8260038111156126025761260161383f565b5b0361264657805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161263d919061285a565b60405180910390fd5b6003808111156126595761265861383f565b5b82600381111561266c5761266b61383f565b5b036126ae57806040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004016126a59190612b39565b60405180910390fd5b5b5050565b60605f6126bf83612725565b90505f602067ffffffffffffffff8111156126dd576126dc6134f4565b5b6040519080825280601f01601f19166020018201604052801561270f5781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f5f60ff835f1c169050601f81111561276a576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b6040518061010001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f815260200160608152602001606081525090565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f6127f4826127b2565b6127fe81856127bc565b935061280e8185602086016127cc565b612817816127da565b840191505092915050565b5f6020820190508181035f83015261283a81846127ea565b905092915050565b5f819050919050565b61285481612842565b82525050565b5f60208201905061286d5f83018461284b565b92915050565b5f5ffd5b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6128a48261287b565b9050919050565b6128b48161289a565b81146128be575f5ffd5b50565b5f813590506128cf816128ab565b92915050565b6128de81612842565b81146128e8575f5ffd5b50565b5f813590506128f9816128d5565b92915050565b5f5f6040838503121561291557612914612873565b5b5f612922858286016128c1565b9250506020612933858286016128eb565b9150509250929050565b5f8115159050919050565b6129518161293d565b82525050565b5f60208201905061296a5f830184612948565b92915050565b5f5f6040838503121561298657612985612873565b5b5f612993858286016128eb565b92505060206129a4858286016128eb565b9150509250929050565b5f819050919050565b5f6129d16129cc6129c78461287b565b6129ae565b61287b565b9050919050565b5f6129e2826129b7565b9050919050565b5f6129f3826129d8565b9050919050565b612a03816129e9565b82525050565b5f602082019050612a1c5f8301846129fa565b92915050565b5f60208284031215612a3757612a36612873565b5b5f612a44848285016128eb565b91505092915050565b5f5f5f60608486031215612a6457612a63612873565b5b5f612a71868287016128c1565b9350506020612a82868287016128c1565b9250506040612a93868287016128eb565b9150509250925092565b5f5f5f60608486031215612ab457612ab3612873565b5b5f612ac1868287016128eb565b9350506020612ad2868287016128eb565b9250506040612ae3868287016128c1565b9150509250925092565b5f60ff82169050919050565b612b0281612aed565b82525050565b5f602082019050612b1b5f830184612af9565b92915050565b5f819050919050565b612b3381612b21565b82525050565b5f602082019050612b4c5f830184612b2a565b92915050565b5f5f5f5f60808587031215612b6a57612b69612873565b5b5f612b77878288016128eb565b9450506020612b88878288016128eb565b9350506040612b99878288016128c1565b9250506060612baa878288016128eb565b91505092959194509250565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612be881612842565b82525050565b5f612bf98383612bdf565b60208301905092915050565b5f602082019050919050565b5f612c1b82612bb6565b612c258185612bc0565b9350612c3083612bd0565b805f5b83811015612c60578151612c478882612bee565b9750612c5283612c05565b925050600181019050612c33565b5085935050505092915050565b5f604082019050612c805f83018561284b565b8181036020830152612c928184612c11565b90509392505050565b5f60208284031215612cb057612caf612873565b5b5f612cbd848285016128c1565b91505092915050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83601f840112612ce757612ce6612cc6565b5b8235905067ffffffffffffffff811115612d0457612d03612cca565b5b602083019150836040820283011115612d2057612d1f612cce565b5b9250929050565b5f5f60208385031215612d3d57612d3c612873565b5b5f83013567ffffffffffffffff811115612d5a57612d59612877565b5b612d6685828601612cd2565b92509250509250929050565b5f5f5f60608486031215612d8957612d88612873565b5b5f612d96868287016128c1565b9350506020612da7868287016128eb565b9250506040612db8868287016128eb565b9150509250925092565b5f82825260208201905092915050565b5f612ddc82612bb6565b612de68185612dc2565b9350612df183612bd0565b805f5b83811015612e21578151612e088882612bee565b9750612e1383612c05565b925050600181019050612df4565b5085935050505092915050565b5f61010083015f830151612e445f860182612bdf565b506020830151612e576020860182612bdf565b506040830151612e6a6040860182612bdf565b506060830151612e7d6060860182612bdf565b506080830151612e906080860182612bdf565b5060a0830151612ea360a0860182612bdf565b5060c083015184820360c0860152612ebb8282612dd2565b91505060e083015184820360e0860152612ed58282612dd2565b9150508091505092915050565b5f6020820190508181035f830152612efa8184612e2e565b905092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b612f3681612f02565b82525050565b612f458161289a565b82525050565b5f60e082019050612f5e5f83018a612f2d565b8181036020830152612f7081896127ea565b90508181036040830152612f8481886127ea565b9050612f93606083018761284b565b612fa06080830186612f3c565b612fad60a0830185612b2a565b81810360c0830152612fbf8184612c11565b905098975050505050505050565b612fd681612aed565b8114612fe0575f5ffd5b50565b5f81359050612ff181612fcd565b92915050565b61300081612b21565b811461300a575f5ffd5b50565b5f8135905061301b81612ff7565b92915050565b5f5f5f5f5f5f5f60e0888a03121561303c5761303b612873565b5b5f6130498a828b016128c1565b975050602061305a8a828b016128c1565b965050604061306b8a828b016128eb565b955050606061307c8a828b016128eb565b945050608061308d8a828b01612fe3565b93505060a061309e8a828b0161300d565b92505060c06130af8a828b0161300d565b91505092959891949750929550565b5f5f604083850312156130d4576130d3612873565b5b5f6130e1858286016128c1565b92505060206130f2858286016128c1565b9150509250929050565b5f5f6040838503121561311257613111612873565b5b5f61311f858286016128eb565b9250506020613130858286016128c1565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061317e57607f821691505b6020821081036131915761319061313a565b5b50919050565b7f4e6574776f726b2068617320656e6465642100000000000000000000000000005f82015250565b5f6131cb6012836127bc565b91506131d682613197565b602082019050919050565b5f6020820190508181035f8301526131f8816131bf565b9050919050565b7f496e76616c69642065706f6368206e756d6265722e00000000000000000000005f82015250565b5f6132336015836127bc565b915061323e826131ff565b602082019050919050565b5f6020820190508181035f83015261326081613227565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61329e82612842565b91506132a983612842565b92508282019050808211156132c1576132c0613267565b5b92915050565b5f6132d182612842565b91506132dc83612842565b92508282026132ea81612842565b9150828204841483151761330157613300613267565b5b5092915050565b5f60608201905061331b5f830186612f3c565b6133286020830185612f3c565b613335604083018461284b565b949350505050565b6133468161293d565b8114613350575f5ffd5b50565b5f815190506133618161333d565b92915050565b5f6020828403121561337c5761337b612873565b5b5f61338984828501613353565b91505092915050565b7f54460000000000000000000000000000000000000000000000000000000000005f82015250565b5f6133c66002836127bc565b91506133d182613392565b602082019050919050565b5f6020820190508181035f8301526133f3816133ba565b9050919050565b5f60608201905061340d5f83018661284b565b61341a602083018561284b565b613427604083018461284b565b949350505050565b7f43616e6e6f7420636c61696d20616e206f6e676f696e672065706f63682100005f82015250565b5f613463601e836127bc565b915061346e8261342f565b602082019050919050565b5f6020820190508181035f83015261349081613457565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6134ce82612842565b91506134d983612842565b9250826134e9576134e8613497565b5b828204905092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f61355882612842565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361358a57613589613267565b5b600182019050919050565b5f61359f82612842565b91506135aa83612842565b92508282039050818111156135c2576135c1613267565b5b92915050565b7f52616e676573206f7665726c61702100000000000000000000000000000000005f82015250565b5f6135fc600f836127bc565b9150613607826135c8565b602082019050919050565b5f6020820190508181035f830152613629816135f0565b9050919050565b7f4d696e696e6720686173206e6f742073746172746564207965742100000000005f82015250565b5f613664601b836127bc565b915061366f82613630565b602082019050919050565b5f6020820190508181035f83015261369181613658565b9050919050565b5f815190506136a6816128d5565b92915050565b5f602082840312156136c1576136c0612873565b5b5f6136ce84828501613698565b91505092915050565b5f60c0820190506136ea5f830189612b2a565b6136f76020830188612f3c565b6137046040830187612f3c565b613711606083018661284b565b61371e608083018561284b565b61372b60a083018461284b565b979650505050505050565b5f6040820190506137495f830185612f3c565b6137566020830184612f3c565b9392505050565b5f6060820190506137705f830186612f3c565b61377d602083018561284b565b61378a604083018461284b565b949350505050565b5f6020820190506137a55f830184612f3c565b92915050565b5f60a0820190506137be5f830188612b2a565b6137cb6020830187612b2a565b6137d86040830186612b2a565b6137e5606083018561284b565b6137f26080830184612f3c565b9695505050505050565b5f60808201905061380f5f830187612b2a565b61381c6020830186612af9565b6138296040830185612b2a565b6138366060830184612b2a565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122077a039e5bbf9e3712e69b5620f29e375776d3750ace5508db6d8742afe331ab064736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf80000000000000000000000008dc77b145d7009752d6947b3cf6d983cafa1c0bb000000000000000000000000000000000000000000000002b5e3af16b18800000000000000000000000000000000000000000000000000000000000069905cb80000000000000000000000000000000000000000000000000000000069999738

-----Decoded View---------------
Arg [0] : _bethContract (address): 0x5624344235607940d4d4EE76Bf8817d403EB9Cf8
Arg [1] : _premineAddress (address): 0x8DC77b145d7009752D6947B3CF6D983caFA1C0Bb
Arg [2] : _premineAmount (uint256): 50000000000000000000
Arg [3] : _startingTimestamp (uint256): 1771068600
Arg [4] : _endingTimestamp (uint256): 1771673400

-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000005624344235607940d4d4ee76bf8817d403eb9cf8
Arg [1] : 0000000000000000000000008dc77b145d7009752d6947b3cf6d983cafa1c0bb
Arg [2] : 000000000000000000000000000000000000000000000002b5e3af16b1880000
Arg [3] : 0000000000000000000000000000000000000000000000000000000069905cb8
Arg [4] : 0000000000000000000000000000000000000000000000000000000069999738


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.