Contract Name:
UnmanagedGrant
Contract Source Code:
File 1 of 1 : UnmanagedGrant
/**
*Submitted for verification at Etherscan.io on 2020-12-03
*/
// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: contracts/shared/libraries/abdk-libraries/ABDKMathQuad.sol
/*
* ABDK Math Quad Smart Contract Library. Copyright © 2019 by ABDK Consulting.
* Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
*/
pragma solidity ^0.7.0;
/**
* Smart contract library of mathematical functions operating with IEEE 754
* quadruple-precision binary floating-point numbers (quadruple precision
* numbers). As long as quadruple precision numbers are 16-bytes long, they are
* represented by bytes16 type.
*/
library ABDKMathQuad {
/*
* 0.
*/
bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;
/*
* -0.
*/
bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;
/*
* +Infinity.
*/
bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;
/*
* -Infinity.
*/
bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;
/*
* Canonical NaN value.
*/
bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;
/**
* Convert signed 256-bit integer number into quadruple precision number.
*
* @param x signed 256-bit integer number
* @return quadruple precision number
*/
function fromInt (int256 x) internal pure returns (bytes16) {
if (x == 0) return bytes16 (0);
else {
// We rely on overflow behavior here
uint256 result = uint256 (x > 0 ? x : -x);
uint256 msb = msb (result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16 (uint128 (result));
}
}
/**
* Convert quadruple precision number into signed 256-bit integer number
* rounding towards zero. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 256-bit integer number
*/
function toInt (bytes16 x) internal pure returns (int256) {
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
require (exponent <= 16638); // Overflow
if (exponent < 16383) return 0; // Underflow
uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
0x10000000000000000000000000000;
if (exponent < 16495) result >>= 16495 - exponent;
else if (exponent > 16495) result <<= exponent - 16495;
if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (result); // We rely on overflow behavior here
} else {
require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (result);
}
}
/**
* Convert unsigned 256-bit integer number into quadruple precision number.
*
* @param x unsigned 256-bit integer number
* @return quadruple precision number
*/
function fromUInt (uint256 x) internal pure returns (bytes16) {
if (x == 0) return bytes16 (0);
else {
uint256 result = x;
uint256 msb = msb (result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
return bytes16 (uint128 (result));
}
}
/**
* Convert quadruple precision number into unsigned 256-bit integer number
* rounding towards zero. Revert on underflow. Note, that negative floating
* point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
* without error, because they are rounded to zero.
*
* @param x quadruple precision number
* @return unsigned 256-bit integer number
*/
function toUInt (bytes16 x) internal pure returns (uint256) {
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
if (exponent < 16383) return 0; // Underflow
require (uint128 (x) < 0x80000000000000000000000000000000); // Negative
require (exponent <= 16638); // Overflow
uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
0x10000000000000000000000000000;
if (exponent < 16495) result >>= 16495 - exponent;
else if (exponent > 16495) result <<= exponent - 16495;
return result;
}
/**
* Convert signed 128.128 bit fixed point number into quadruple precision
* number.
*
* @param x signed 128.128 bit fixed point number
* @return quadruple precision number
*/
function from128x128 (int256 x) internal pure returns (bytes16) {
if (x == 0) return bytes16 (0);
else {
// We rely on overflow behavior here
uint256 result = uint256 (x > 0 ? x : -x);
uint256 msb = msb (result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112;
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16 (uint128 (result));
}
}
/**
* Convert quadruple precision number into signed 128.128 bit fixed point
* number. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 128.128 bit fixed point number
*/
function to128x128 (bytes16 x) internal pure returns (int256) {
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
require (exponent <= 16510); // Overflow
if (exponent < 16255) return 0; // Underflow
uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
0x10000000000000000000000000000;
if (exponent < 16367) result >>= 16367 - exponent;
else if (exponent > 16367) result <<= exponent - 16367;
if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256 (result); // We rely on overflow behavior here
} else {
require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256 (result);
}
}
/**
* Convert signed 64.64 bit fixed point number into quadruple precision
* number.
*
* @param x signed 64.64 bit fixed point number
* @return quadruple precision number
*/
function from64x64 (int128 x) internal pure returns (bytes16) {
if (x == 0) return bytes16 (0);
else {
// We rely on overflow behavior here
uint256 result = uint128 (x > 0 ? x : -x);
uint256 msb = msb (result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112;
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16 (uint128 (result));
}
}
/**
* Convert quadruple precision number into signed 64.64 bit fixed point
* number. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 64.64 bit fixed point number
*/
function to64x64 (bytes16 x) internal pure returns (int128) {
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
require (exponent <= 16446); // Overflow
if (exponent < 16319) return 0; // Underflow
uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
0x10000000000000000000000000000;
if (exponent < 16431) result >>= 16431 - exponent;
else if (exponent > 16431) result <<= exponent - 16431;
if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
require (result <= 0x80000000000000000000000000000000);
return -int128 (result); // We rely on overflow behavior here
} else {
require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128 (result);
}
}
/**
* Convert octuple precision number into quadruple precision number.
*
* @param x octuple precision number
* @return quadruple precision number
*/
function fromOctuple (bytes32 x) internal pure returns (bytes16) {
bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;
uint256 exponent = uint256 (x) >> 236 & 0x7FFFF;
uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFFF) {
if (significand > 0) return NaN;
else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
}
if (exponent > 278526)
return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
else if (exponent < 245649)
return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
else if (exponent < 245761) {
significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent;
exponent = 0;
} else {
significand >>= 124;
exponent -= 245760;
}
uint128 result = uint128 (significand | exponent << 112);
if (negative) result |= 0x80000000000000000000000000000000;
return bytes16 (result);
}
/**
* Convert quadruple precision number into octuple precision number.
*
* @param x quadruple precision number
* @return octuple precision number
*/
function toOctuple (bytes16 x) internal pure returns (bytes32) {
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN
else if (exponent == 0) {
if (result > 0) {
uint256 msb = msb (result);
result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
exponent = 245649 + msb;
}
} else {
result <<= 124;
exponent += 245760;
}
result |= exponent << 236;
if (uint128 (x) >= 0x80000000000000000000000000000000)
result |= 0x8000000000000000000000000000000000000000000000000000000000000000;
return bytes32 (result);
}
/**
* Convert double precision number into quadruple precision number.
*
* @param x double precision number
* @return quadruple precision number
*/
function fromDouble (bytes8 x) internal pure returns (bytes16) {
uint256 exponent = uint64 (x) >> 52 & 0x7FF;
uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF;
if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN
else if (exponent == 0) {
if (result > 0) {
uint256 msb = msb (result);
result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
exponent = 15309 + msb;
}
} else {
result <<= 60;
exponent += 15360;
}
result |= exponent << 112;
if (x & 0x8000000000000000 > 0)
result |= 0x80000000000000000000000000000000;
return bytes16 (uint128 (result));
}
/**
* Convert quadruple precision number into double precision number.
*
* @param x quadruple precision number
* @return double precision number
*/
function toDouble (bytes16 x) internal pure returns (bytes8) {
bool negative = uint128 (x) >= 0x80000000000000000000000000000000;
uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFF) {
if (significand > 0) return 0x7FF8000000000000; // NaN
else return negative ?
bytes8 (0xFFF0000000000000) : // -Infinity
bytes8 (0x7FF0000000000000); // Infinity
}
if (exponent > 17406)
return negative ?
bytes8 (0xFFF0000000000000) : // -Infinity
bytes8 (0x7FF0000000000000); // Infinity
else if (exponent < 15309)
return negative ?
bytes8 (0x8000000000000000) : // -0
bytes8 (0x0000000000000000); // 0
else if (exponent < 15361) {
significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent;
exponent = 0;
} else {
significand >>= 60;
exponent -= 15360;
}
uint64 result = uint64 (significand | exponent << 52);
if (negative) result |= 0x8000000000000000;
return bytes8 (result);
}
/**
* Test whether given quadruple precision number is NaN.
*
* @param x quadruple precision number
* @return true if x is NaN, false otherwise
*/
function isNaN (bytes16 x) internal pure returns (bool) {
return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
0x7FFF0000000000000000000000000000;
}
/**
* Test whether given quadruple precision number is positive or negative
* infinity.
*
* @param x quadruple precision number
* @return true if x is positive or negative infinity, false otherwise
*/
function isInfinity (bytes16 x) internal pure returns (bool) {
return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ==
0x7FFF0000000000000000000000000000;
}
/**
* Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
* is positive. Note that sign (-0) is zero. Revert if x is NaN.
*
* @param x quadruple precision number
* @return sign of x
*/
function sign (bytes16 x) internal pure returns (int8) {
uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
if (absoluteX == 0) return 0;
else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1;
else return 1;
}
/**
* Calculate sign (x - y). Revert if either argument is NaN, or both
* arguments are infinities of the same sign.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return sign (x - y)
*/
function cmp (bytes16 x, bytes16 y) internal pure returns (int8) {
uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN
// Not infinities of the same sign
require (x != y || absoluteX < 0x7FFF0000000000000000000000000000);
if (x == y) return 0;
else {
bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000;
bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000;
if (negativeX) {
if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1);
else return -1;
} else {
if (negativeY) return 1;
else return absoluteX > absoluteY ? int8 (1) : -1;
}
}
}
/**
* Test whether x equals y. NaN, infinity, and -infinity are not equal to
* anything.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return true if x equals to y, false otherwise
*/
function eq (bytes16 x, bytes16 y) internal pure returns (bool) {
if (x == y) {
return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF <
0x7FFF0000000000000000000000000000;
} else return false;
}
/**
* Calculate x + y. Special values behave in the following way:
*
* NaN + x = NaN for any x.
* Infinity + x = Infinity for any finite x.
* -Infinity + x = -Infinity for any finite x.
* Infinity + Infinity = Infinity.
* -Infinity + -Infinity = -Infinity.
* Infinity + -Infinity = -Infinity + Infinity = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function add (bytes16 x, bytes16 y) internal pure returns (bytes16) {
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) {
if (x == y) return x;
else return NaN;
} else return x;
} else if (yExponent == 0x7FFF) return y;
else {
bool xSign = uint128 (x) >= 0x80000000000000000000000000000000;
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
bool ySign = uint128 (y) >= 0x80000000000000000000000000000000;
uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
else {
int256 delta = int256 (xExponent) - int256 (yExponent);
if (xSign == ySign) {
if (delta > 112) return x;
else if (delta > 0) ySignifier >>= uint256 (delta);
else if (delta < -112) return y;
else if (delta < 0) {
xSignifier >>= uint256 (-delta);
xExponent = yExponent;
}
xSignifier += ySignifier;
if (xSignifier >= 0x20000000000000000000000000000) {
xSignifier >>= 1;
xExponent += 1;
}
if (xExponent == 0x7FFF)
return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
else {
if (xSignifier < 0x10000000000000000000000000000) xExponent = 0;
else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
return bytes16 (uint128 (
(xSign ? 0x80000000000000000000000000000000 : 0) |
(xExponent << 112) |
xSignifier));
}
} else {
if (delta > 0) {
xSignifier <<= 1;
xExponent -= 1;
} else if (delta < 0) {
ySignifier <<= 1;
xExponent = yExponent - 1;
}
if (delta > 112) ySignifier = 1;
else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1;
else if (delta < -112) xSignifier = 1;
else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1;
if (xSignifier >= ySignifier) xSignifier -= ySignifier;
else {
xSignifier = ySignifier - xSignifier;
xSign = ySign;
}
if (xSignifier == 0)
return POSITIVE_ZERO;
uint256 msb = msb (xSignifier);
if (msb == 113) {
xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent += 1;
} else if (msb < 112) {
uint256 shift = 112 - msb;
if (xExponent > shift) {
xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent -= shift;
} else {
xSignifier <<= xExponent - 1;
xExponent = 0;
}
} else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0x7FFF)
return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
else return bytes16 (uint128 (
(xSign ? 0x80000000000000000000000000000000 : 0) |
(xExponent << 112) |
xSignifier));
}
}
}
}
/**
* Calculate x - y. Special values behave in the following way:
*
* NaN - x = NaN for any x.
* Infinity - x = Infinity for any finite x.
* -Infinity - x = -Infinity for any finite x.
* Infinity - -Infinity = Infinity.
* -Infinity - Infinity = -Infinity.
* Infinity - Infinity = -Infinity - -Infinity = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) {
return add (x, y ^ 0x80000000000000000000000000000000);
}
/**
* Calculate x * y. Special values behave in the following way:
*
* NaN * x = NaN for any x.
* Infinity * x = Infinity for any finite positive x.
* Infinity * x = -Infinity for any finite negative x.
* -Infinity * x = -Infinity for any finite positive x.
* -Infinity * x = Infinity for any finite negative x.
* Infinity * 0 = NaN.
* -Infinity * 0 = NaN.
* Infinity * Infinity = Infinity.
* Infinity * -Infinity = -Infinity.
* -Infinity * Infinity = -Infinity.
* -Infinity * -Infinity = Infinity.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) {
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) {
if (x == y) return x ^ y & 0x80000000000000000000000000000000;
else if (x ^ y == 0x80000000000000000000000000000000) return x | y;
else return NaN;
} else {
if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return x ^ y & 0x80000000000000000000000000000000;
}
} else if (yExponent == 0x7FFF) {
if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return y ^ x & 0x80000000000000000000000000000000;
} else {
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
xSignifier *= ySignifier;
if (xSignifier == 0)
return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
NEGATIVE_ZERO : POSITIVE_ZERO;
xExponent += yExponent;
uint256 msb =
xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 :
xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 :
msb (xSignifier);
if (xExponent + msb < 16496) { // Underflow
xExponent = 0;
xSignifier = 0;
} else if (xExponent + msb < 16608) { // Subnormal
if (xExponent < 16496)
xSignifier >>= 16496 - xExponent;
else if (xExponent > 16496)
xSignifier <<= xExponent - 16496;
xExponent = 0;
} else if (xExponent + msb > 49373) {
xExponent = 0x7FFF;
xSignifier = 0;
} else {
if (msb > 112)
xSignifier >>= msb - 112;
else if (msb < 112)
xSignifier <<= 112 - msb;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent = xExponent + msb - 16607;
}
return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
xExponent << 112 | xSignifier));
}
}
/**
* Calculate x / y. Special values behave in the following way:
*
* NaN / x = NaN for any x.
* x / NaN = NaN for any x.
* Infinity / x = Infinity for any finite non-negative x.
* Infinity / x = -Infinity for any finite negative x including -0.
* -Infinity / x = -Infinity for any finite non-negative x.
* -Infinity / x = Infinity for any finite negative x including -0.
* x / Infinity = 0 for any finite non-negative x.
* x / -Infinity = -0 for any finite non-negative x.
* x / Infinity = -0 for any finite non-negative x including -0.
* x / -Infinity = 0 for any finite non-negative x including -0.
*
* Infinity / Infinity = NaN.
* Infinity / -Infinity = -NaN.
* -Infinity / Infinity = -NaN.
* -Infinity / -Infinity = NaN.
*
* Division by zero behaves in the following way:
*
* x / 0 = Infinity for any finite positive x.
* x / -0 = -Infinity for any finite positive x.
* x / 0 = -Infinity for any finite negative x.
* x / -0 = Infinity for any finite negative x.
* 0 / 0 = NaN.
* 0 / -0 = NaN.
* -0 / 0 = NaN.
* -0 / -0 = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function div (bytes16 x, bytes16 y) internal pure returns (bytes16) {
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) return NaN;
else return x ^ y & 0x80000000000000000000000000000000;
} else if (yExponent == 0x7FFF) {
if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000;
} else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000;
} else {
uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) {
if (xSignifier != 0) {
uint shift = 226 - msb (xSignifier);
xSignifier <<= shift;
xExponent = 1;
yExponent += shift - 114;
}
}
else {
xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
}
xSignifier = xSignifier / ySignifier;
if (xSignifier == 0)
return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
NEGATIVE_ZERO : POSITIVE_ZERO;
assert (xSignifier >= 0x1000000000000000000000000000);
uint256 msb =
xSignifier >= 0x80000000000000000000000000000 ? msb (xSignifier) :
xSignifier >= 0x40000000000000000000000000000 ? 114 :
xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;
if (xExponent + msb > yExponent + 16497) { // Overflow
xExponent = 0x7FFF;
xSignifier = 0;
} else if (xExponent + msb + 16380 < yExponent) { // Underflow
xExponent = 0;
xSignifier = 0;
} else if (xExponent + msb + 16268 < yExponent) { // Subnormal
if (xExponent + 16380 > yExponent)
xSignifier <<= xExponent + 16380 - yExponent;
else if (xExponent + 16380 < yExponent)
xSignifier >>= yExponent - xExponent - 16380;
xExponent = 0;
} else { // Normal
if (msb > 112)
xSignifier >>= msb - 112;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent = xExponent + msb + 16269 - yExponent;
}
return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
xExponent << 112 | xSignifier));
}
}
/**
* Calculate -x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function neg (bytes16 x) internal pure returns (bytes16) {
return x ^ 0x80000000000000000000000000000000;
}
/**
* Calculate |x|.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function abs (bytes16 x) internal pure returns (bytes16) {
return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
}
/**
* Calculate square root of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function sqrt (bytes16 x) internal pure returns (bytes16) {
if (uint128 (x) > 0x80000000000000000000000000000000) return NaN;
else {
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
if (xExponent == 0x7FFF) return x;
else {
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) return POSITIVE_ZERO;
bool oddExponent = xExponent & 0x1 == 0;
xExponent = xExponent + 16383 >> 1;
if (oddExponent) {
if (xSignifier >= 0x10000000000000000000000000000)
xSignifier <<= 113;
else {
uint256 msb = msb (xSignifier);
uint256 shift = (226 - msb) & 0xFE;
xSignifier <<= shift;
xExponent -= shift - 112 >> 1;
}
} else {
if (xSignifier >= 0x10000000000000000000000000000)
xSignifier <<= 112;
else {
uint256 msb = msb (xSignifier);
uint256 shift = (225 - msb) & 0xFE;
xSignifier <<= shift;
xExponent -= shift - 112 >> 1;
}
}
uint256 r = 0x10000000000000000000000000000;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
uint256 r1 = xSignifier / r;
if (r1 < r) r = r1;
return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
}
}
}
/**
* Calculate binary logarithm of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function log_2 (bytes16 x) internal pure returns (bytes16) {
if (uint128 (x) > 0x80000000000000000000000000000000) return NaN;
else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO;
else {
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
if (xExponent == 0x7FFF) return x;
else {
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) return NEGATIVE_INFINITY;
bool resultNegative;
uint256 resultExponent = 16495;
uint256 resultSignifier;
if (xExponent >= 0x3FFF) {
resultNegative = false;
resultSignifier = xExponent - 0x3FFF;
xSignifier <<= 15;
} else {
resultNegative = true;
if (xSignifier >= 0x10000000000000000000000000000) {
resultSignifier = 0x3FFE - xExponent;
xSignifier <<= 15;
} else {
uint256 msb = msb (xSignifier);
resultSignifier = 16493 - msb;
xSignifier <<= 127 - msb;
}
}
if (xSignifier == 0x80000000000000000000000000000000) {
if (resultNegative) resultSignifier += 1;
uint256 shift = 112 - msb (resultSignifier);
resultSignifier <<= shift;
resultExponent -= shift;
} else {
uint256 bb = resultNegative ? 1 : 0;
while (resultSignifier < 0x10000000000000000000000000000) {
resultSignifier <<= 1;
resultExponent -= 1;
xSignifier *= xSignifier;
uint256 b = xSignifier >> 255;
resultSignifier += b ^ bb;
xSignifier >>= 127 + b;
}
}
return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) |
resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
}
}
}
/**
* Calculate natural logarithm of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function ln (bytes16 x) internal pure returns (bytes16) {
return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5);
}
/**
* Calculate 2^x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function pow_2 (bytes16 x) internal pure returns (bytes16) {
bool xNegative = uint128 (x) > 0x80000000000000000000000000000000;
uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0x7FFF && xSignifier != 0) return NaN;
else if (xExponent > 16397)
return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
else if (xExponent < 16255)
return 0x3FFF0000000000000000000000000000;
else {
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xExponent > 16367)
xSignifier <<= xExponent - 16367;
else if (xExponent < 16367)
xSignifier >>= 16367 - xExponent;
if (xNegative && xSignifier > 0x406E00000000000000000000000000000000)
return POSITIVE_ZERO;
if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
return POSITIVE_INFINITY;
uint256 resultExponent = xSignifier >> 128;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xNegative && xSignifier != 0) {
xSignifier = ~xSignifier;
resultExponent += 1;
}
uint256 resultSignifier = 0x80000000000000000000000000000000;
if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128;
if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128;
if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128;
if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128;
if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128;
if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128;
if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128;
if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128;
if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128;
if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128;
if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128;
if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128;
if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128;
if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128;
if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128;
if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128;
if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128;
if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128;
if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128;
if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128;
if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128;
if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128;
if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128;
if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128;
if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128;
if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128;
if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128;
if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128;
if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128;
if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128;
if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128;
if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128;
if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128;
if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128;
if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128;
if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128;
if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128;
if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128;
if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128;
if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128;
if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128;
if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128;
if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128;
if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128;
if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128;
if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128;
if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128;
if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128;
if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128;
if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128;
if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128;
if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128;
if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128;
if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128;
if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128;
if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128;
if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128;
if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128;
if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128;
if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128;
if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128;
if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128;
if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128;
if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128;
if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128;
if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128;
if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128;
if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128;
if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128;
if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128;
if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128;
if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128;
if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128;
if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128;
if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128;
if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128;
if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128;
if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128;
if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128;
if (!xNegative) {
resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
resultExponent += 0x3FFF;
} else if (resultExponent <= 0x3FFE) {
resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
resultExponent = 0x3FFF - resultExponent;
} else {
resultSignifier = resultSignifier >> resultExponent - 16367;
resultExponent = 0;
}
return bytes16 (uint128 (resultExponent << 112 | resultSignifier));
}
}
/**
* Calculate e^x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function exp (bytes16 x) internal pure returns (bytes16) {
return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
}
/**
* Get index of the most significant non-zero bit in binary representation of
* x. Reverts if x is zero.
*
* @return index of the most significant non-zero bit in binary representation
* of x
*/
function msb (uint256 x) private pure returns (uint256) {
require (x > 0);
uint256 result = 0;
if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; }
if (x >= 0x10000000000000000) { x >>= 64; result += 64; }
if (x >= 0x100000000) { x >>= 32; result += 32; }
if (x >= 0x10000) { x >>= 16; result += 16; }
if (x >= 0x100) { x >>= 8; result += 8; }
if (x >= 0x10) { x >>= 4; result += 4; }
if (x >= 0x4) { x >>= 2; result += 2; }
if (x >= 0x2) result += 1; // No need to shift x anymore
return result;
}
}
// File: contracts/shared/libraries/Percentages.sol
pragma solidity ^0.7.0;
/**
* @title Percentage Helpers for Grant Contracts.
* @dev Used to offer pro-rata refunds and proportionate payment splitting among grantees
* without loss of precision when handling tokens with large supply.
* @author @NoahMarconi
*/
library Percentages {
/**
* @dev Calculate quad point percentage from two uint256 values.
* @param numerator division numerator.
* @param denominator division denominator.
*/
function percentage(uint256 numerator, uint256 denominator)
internal
pure
returns (bytes16)
{
bytes16 num = ABDKMathQuad.fromUInt(numerator);
bytes16 den = ABDKMathQuad.fromUInt(denominator);
return ABDKMathQuad.div(num, den);
}
/**
* @dev Multiply a quad point percentage by a uint256 value.
* @param percent percent of total.
* @param total total to get percent value from.
*/
function percentTimesTotal(bytes16 percent, uint256 total)
internal
pure
returns (uint256)
{
bytes16 tot = ABDKMathQuad.fromUInt(total);
bytes16 res = ABDKMathQuad.mul(tot, percent);
return ABDKMathQuad.toUInt(res);
}
/**
* @dev Determine the maxiumum allocation for a Donor or Grantee.
* @param contribution their contribution to total.
* @param totalPool total pool to derive percentage owed from.
* @param remainingPool remaining pool to split between Donors or Grantees.
*/
function maxAllocation(uint256 contribution, uint256 totalPool, uint256 remainingPool)
internal
pure
returns (uint256)
{
bytes16 contributionPercent = Percentages.percentage(
contribution,
totalPool
);
uint256 contributionMaxAllocation = Percentages.percentTimesTotal(
contributionPercent,
remainingPool
);
return contributionMaxAllocation;
}
}
// File: @openzeppelin/contracts/math/SafeMath.sol
pragma solidity ^0.7.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: contracts/shared/interfaces/IGrantee.sol
pragma solidity ^0.7.0;
/**
* @title Grants Spec Abstract Contract.
* @dev Grant request, funding, and management.
* @author @NoahMarconi
*/
interface IGrantee {
/*---------- Global Variable Getters ----------*/
/**
* @dev Overall funding target for all grantees combined.
*/
function getCumulativeTargetFunding()
external
view
returns(uint256);
/**
* @dev Grantee amounts are percentage based (if true) or fixed (if false).
*/
function getPercentageBased()
external
view
returns(bool);
/*---------- Shared Getters ----------*/
/**
* @dev Get number of grantees.
* @return number of grantees.
*/
function getGranteeReferenceLength()
external
view
returns(uint256);
/**
* @dev Get grantee address by index.
* @param index index of grantee to get.
* @return grantee address.
*/
function getGranteeReference(uint256 index)
external
view
returns(address);
/**
* @dev Get grantee target funding by address.
* @param grantee address of grantee to set.
* @return target funding.
*/
function getGranteeTargetFunding(address grantee)
external
view
returns(uint256);
/**
* @dev Get grantee total amount paid by address.
* @param grantee address of grantee to set.
* @return total paid.
*/
function getGranteeTotalPaid(address grantee)
external
view
returns(uint256);
/**
* @dev Get grantee payout approved paid by address.
* @param grantee address of grantee to set.
* @return payout approved.
*/
function getGranteePayoutApproved(address grantee)
external
view
returns(uint256);
}
// File: contracts/shared/storage/Grantee.sol
pragma solidity ^0.7.0;
/**
* @title Grantee State Management Contract.
* @dev State, getters, and setters for Grantees.
* @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
*/
abstract contract Grantee is IGrantee {
/*---------- Globals ----------*/
mapping(address => uint256) private granteeTargetFunding; // Funding amount targeted for Grantee.
mapping(address => uint256) private granteeTotalPaid; // Cumulative funding received by Grantee.
mapping(address => uint256) private granteePayoutApproved; // Pending payout approved by Manager.
address[] private granteeReference; // Reference to grantee addresses to allow for iterating over grantees.
uint256 private cumulativeTargetFunding; // Denominator for calculating grantee's percentage.
bool private percentageBased = false; // Grantee amounts are percentage based (if true) or fixed (if false).
/*---------- Global Variable Getters ----------*/
/**
* @dev Overall funding target for all grantees combined.
*/
function getCumulativeTargetFunding()
public
view
override
returns(uint256)
{
return cumulativeTargetFunding;
}
/**
* @dev Grantee amounts are percentage based (if true) or fixed (if false).
*/
function getPercentageBased()
public
view
override
returns(bool)
{
return percentageBased;
}
/*---------- Global Variable Setters ----------*/
/**
* @dev Overall funding target for all grantees combined.
* @param value cumulative target funding to set.
*/
function setPercentageBased(bool value)
internal
{
percentageBased = value;
}
/**
* @dev Set grantee targets as either fixed or percentage based.
* @param value cumulative target funding to set.
*/
function setCumulativeTargetFunding(uint256 value)
internal
{
cumulativeTargetFunding = value;
}
/*---------- Grantee Getters ----------*/
/**
* @dev Get number of grantees.
* @return number of grantees.
*/
function getGranteeReferenceLength()
public
override
view
returns(uint256)
{
return granteeReference.length;
}
/**
* @dev Get grantee address by index.
* @param index index of grantee to get.
* @return grantee address.
*/
function getGranteeReference(uint256 index)
public
override
view
returns(address)
{
return granteeReference[index];
}
/**
* @dev Get grantee target funding by address.
* @param grantee address of grantee to set.
* @return target funding.
*/
function getGranteeTargetFunding(address grantee)
public
override
view
returns(uint256)
{
return granteeTargetFunding[grantee];
}
/**
* @dev Get grantee total amount paid by address.
* @param grantee address of grantee to set.
* @return total paid.
*/
function getGranteeTotalPaid(address grantee)
public
override
view
returns(uint256)
{
return granteeTotalPaid[grantee];
}
/**
* @dev Get grantee payout approved paid by address.
* @param grantee address of grantee to set.
* @return payout approved.
*/
function getGranteePayoutApproved(address grantee)
public
override
view
returns(uint256)
{
return granteePayoutApproved[grantee];
}
/*---------- Grantee Setters ----------*/
/**
* @dev Add grantee address to reference array.
* @param grantee grantee address to add.
*/
function addGranteeReference(address grantee)
internal
{
return granteeReference.push(grantee);
}
/**
* @dev Set grantee target funding by address.
* @param grantee address of grantee to set.
* @param value target funding to set.
*/
function setGranteeTargetFunding(address grantee, uint256 value)
internal
{
granteeTargetFunding[grantee] = value;
}
/**
* @dev Set grantee total amount paid by address.
* @param grantee address of grantee to set.
* @param value total paid to set.
*/
function setGranteeTotalPaid(address grantee, uint256 value)
internal
{
granteeTotalPaid[grantee] = value;
}
/**
* @dev Set grantee payout approved paid by address.
* @param grantee address of grantee to set.
* @param value payout approved to set.
*/
function setGranteePayoutApproved(address grantee, uint256 value)
internal
{
granteePayoutApproved[grantee] = value;
}
}
// File: contracts/shared/modules/GranteeConstructor.sol
pragma solidity ^0.7.0;
contract GranteeConstructor is Grantee {
using SafeMath for uint256;
/*---------- Constructor ----------*/
/**
* @dev Grant creation function. May be called by donors, grantees, or any other relevant party.
* @param _grantees Sorted recipients of donated funds.
* @param _amounts Respective allocations for each Grantee (must follow sort order of _grantees).
* @param _percentageBased Grantee amounts are percentage based (if true) or fixed (if false).
*/
constructor(
address[] memory _grantees,
uint256[] memory _amounts,
bool _percentageBased
)
{
require(
_grantees.length > 0,
"constructor::Invalid Argument. Must have one or more grantees."
);
require(
_grantees.length == _amounts.length,
"constructor::Invalid Argument. _grantees.length must equal _amounts.length"
);
// Initialize Grantees.
address lastAddress = address(0);
uint256 _cumulativeTargetFunding = 0;
for (uint256 i = 0; i < _grantees.length; i++) {
address currentGrantee = _grantees[i];
uint256 currentAmount = _amounts[i];
require(
currentAmount > 0,
"constructor::Invalid Argument. currentAmount must be greater than 0."
);
require(
currentGrantee != address(0),
"constructor::Invalid Argument. grantee address cannot be a ADDRESS_ZERO."
);
require(
currentGrantee > lastAddress,
"constructor::Invalid Argument. Duplicate or out of order _grantees."
);
lastAddress = currentGrantee;
setGranteeTargetFunding(currentGrantee, currentAmount);
_cumulativeTargetFunding = _cumulativeTargetFunding.add(currentAmount);
// Store address as reference.
addGranteeReference(currentGrantee);
}
setCumulativeTargetFunding(_cumulativeTargetFunding);
setPercentageBased(_percentageBased);
}
}
// File: contracts/shared/interfaces/IFunding.sol
pragma solidity ^0.7.0;
/**
* @title Grants Spec Abstract Contract.
* @dev Grant request, funding, and management.
* @author @NoahMarconi
*/
interface IFunding {
/*---------- Events ----------*/
/**
* @dev Funding target reached event.
*/
event LogFundingComplete();
/**
* @dev Grant received funding.
* @param donor Address funding the grant.
* @param value Amount in WEI or ATOMIC_UNITS funded.
*/
event LogFunding(address indexed donor, uint256 value);
/*---------- Shared Getters ----------*/
/**
* @dev Cumulative funding donated by donors.
*/
function getTotalFunding()
external
view
returns(uint256);
}
// File: contracts/shared/storage/Funding.sol
pragma solidity ^0.7.0;
/**
* @title Total Funding.
* @dev Handles state for tracking contract total amount funded.
* @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
*/
abstract contract Funding is IFunding {
using SafeMath for uint256;
/*---------- Globals ----------*/
/* solhint-disable max-line-length */
uint256 private totalFunding; // Cumulative funding donated by donors.
/* solhint-enable max-line-length */
/*---------- Shared Getters ----------*/
/**
* @dev Cumulative funding donated by donors.
*/
function getTotalFunding()
public
override
view
returns(uint256)
{
return totalFunding;
}
/*---------- Shared Setters ----------*/
/**
* @dev Increase cumulative funding donated by donors.
* @param value amount to increase total funding by.
*/
function increaseTotalFundingBy(uint256 value)
internal
{
totalFunding = totalFunding.add(value);
}
function setTotalFunding(uint256 value)
internal
{
totalFunding = value;
}
}
// File: contracts/shared/interfaces/IBaseGrant.sol
pragma solidity ^0.7.0;
/**
* @title Grants Spec Abstract Contract.
* @dev Grant request, funding, and management.
* @author @NoahMarconi
*/
interface IBaseGrant {
/*---------- Events ----------*/
/**
* @dev Funding target reached event.
* implemented in IFunding
* event LogFundingComplete();
*/
/**
* @dev Grant received funding.
* implemented in IFunding
* @param donor Address funding the grant.
* @param value Amount in WEI or ATOMIC_UNITS funded.
* event LogFunding(address indexed donor, uint256 value);
*/
/**
* @dev Grant paying grantee.
* @param grantee Address receiving payment.
* @param value Amount in WEI or ATOMIC_UNITS paid.
*/
event LogPayment(address indexed grantee, uint256 value);
/*---------- Shared Getters ----------*/
/**
* @dev URI for additional (off-chain) grant details such as description, milestones, etc.
*/
function getUri()
external
view
returns(bytes32);
/**
* @dev If null, amount is in wei, otherwise address of ERC20-compliant contract.
*/
function getCurrency()
external
view
returns(address);
/**
* @dev Funding threshold required to begin releasing funds.
*/
function getTargetFunding()
external
view
returns(uint256);
/**
* @dev Cumulative funding paid to grantees.
*/
function getTotalPaid()
external
view
returns(uint256);
/**
* @dev Date after which signal OR funds cannot be sent.
*/
function getFundingDeadline()
external
view
returns(uint256);
/**
* @dev Date after which payouts must be complete or anyone can trigger refunds.
*/
function getContractExpiration()
external
view
returns(uint256);
/**
* @dev Flag to indicate when grant is cancelled.
*/
function getGrantCancelled()
external
view
returns(bool);
}
// File: contracts/shared/storage/BaseGrant.sol
pragma solidity ^0.7.0;
/**
* @title Base Grant State Management Contract.
* @dev State, getters, and setters for BaseGrant.
* @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
*/
abstract contract BaseGrant is IBaseGrant {
/*---------- Globals ----------*/
/* solhint-disable max-line-length */
bytes32 private uri; // URI for additional (off-chain) grant details such as description, milestones, etc.
address private currency; // (Optional) If null, amount is in wei, otherwise address of ERC20-compliant contract.
uint256 private targetFunding; // (Optional) Funding threshold required to begin releasing funds.
uint256 private totalPaid; // Cumulative funding paid to grantees.
uint256 private fundingDeadline; // (Optional) Date after which signal OR funds cannot be sent.
uint256 private contractExpiration; // (Optional) Date after which payouts must be complete or anyone can trigger refunds.
bool private grantCancelled; // Flag to indicate when grant is cancelled.
/* solhint-enable max-line-length */
/*---------- Shared Getters ----------*/
function getUri()
public
override
view
returns(bytes32)
{
return uri;
}
function getContractExpiration()
public
override
view
returns(uint256)
{
return contractExpiration;
}
function getFundingDeadline()
public
override
view
returns(uint256)
{
return fundingDeadline;
}
function getTargetFunding()
public
override
view
returns(uint256)
{
return targetFunding;
}
function getTotalPaid()
public
override
view
returns(uint256)
{
return totalPaid;
}
function getGrantCancelled()
public
override
view
returns(bool)
{
return grantCancelled;
}
function getCurrency()
public
override
view
returns(address)
{
return currency;
}
/*---------- Shared Setters ----------*/
function setTotalPaid(uint256 value)
internal
{
totalPaid = value;
}
function setUri(bytes32 value)
internal
{
uri = value;
}
function setGrantCancelled(bool value)
internal
{
grantCancelled = value;
}
}
// File: contracts/UnmanagedGrant.sol
pragma solidity ^0.7.0;
/**
* @title Grant for Eth2.
* @dev Managed (n)
* Funding Deadline (n)
* Contract expiry (n)
* With Token (n)
* Percentage based allocation (y)
* Withdraw (pull payment) (n)
* This is a simplified grant which behaves as a simple payment splitter.
* No refunds or managers; payment are immediately pushed.
* WARNING: vulnerable to sending to Gas Token generating addresses. Trust in grantees not doing so is required.
* @author @NoahMarconi
*/
contract UnmanagedGrant is ReentrancyGuard, BaseGrant, GranteeConstructor, Funding {
/*---------- Constructor ----------*/
/**
* @dev Grant creation function. May be called by grantors, grantees, or any other relevant party.
* @param _grantees Sorted recipients of unlocked funds.
* @param _amounts Respective allocations for each Grantee (must follow sort order of _grantees).
* @param _uri URI for additional (off-chain) grant details such as description, milestones, etc.
*/
constructor(
address[] memory _grantees,
uint256[] memory _amounts,
bytes32 _uri
)
GranteeConstructor(_grantees, _amounts, true)
{
// Initialize globals.
setUri(_uri);
}
/*---------- Fallback ----------*/
receive()
external
payable
nonReentrant
{
require(
msg.value > 0,
"fallback::Invalid Value. msg.value must be greater than 0."
);
uint256 numGrantees = getGranteeReferenceLength();
address lastGrantee = payable(getGranteeReference(numGrantees - 1));
for (uint256 i = 0; i < numGrantees; i++) {
address payable currentGrantee = payable(getGranteeReference(i));
uint256 eligiblePortion = Percentages.maxAllocation(
getGranteeTargetFunding(currentGrantee),
getCumulativeTargetFunding(),
msg.value
);
if (currentGrantee == lastGrantee) {
// Handle rounding of a few wei.
// @audit question for auditor, should we enforce this is within expected threshold?
eligiblePortion = address(this).balance;
}
if (eligiblePortion > 0) {
(bool success, ) = currentGrantee.call{ value: eligiblePortion}("");
require(
success,
"fallback::Transfer Error. Unable to send eligiblePortion to Grantee."
);
emit LogPayment(currentGrantee, eligiblePortion);
}
}
increaseTotalFundingBy(msg.value);
emit LogFunding(msg.sender, msg.value);
}
}