ETH Price: $1,977.57 (+0.19%)

Contract Diff Checker

Contract Name:
UnmanagedGrant

Contract Source Code:

File 1 of 1 : UnmanagedGrant

/**
 *Submitted for verification at Etherscan.io on 2020-12-03
*/

// File: @openzeppelin/contracts/utils/ReentrancyGuard.sol

// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor () {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

// File: contracts/shared/libraries/abdk-libraries/ABDKMathQuad.sol

/*
 * ABDK Math Quad Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
 */
pragma solidity ^0.7.0;

/**
 * Smart contract library of mathematical functions operating with IEEE 754
 * quadruple-precision binary floating-point numbers (quadruple precision
 * numbers).  As long as quadruple precision numbers are 16-bytes long, they are
 * represented by bytes16 type.
 */
library ABDKMathQuad {
  /*
   * 0.
   */
  bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;

  /*
   * -0.
   */
  bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;

  /*
   * +Infinity.
   */
  bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;

  /*
   * -Infinity.
   */
  bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;

  /*
   * Canonical NaN value.
   */
  bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;

  /**
   * Convert signed 256-bit integer number into quadruple precision number.
   *
   * @param x signed 256-bit integer number
   * @return quadruple precision number
   */
  function fromInt (int256 x) internal pure returns (bytes16) {
    if (x == 0) return bytes16 (0);
    else {
      // We rely on overflow behavior here
      uint256 result = uint256 (x > 0 ? x : -x);

      uint256 msb = msb (result);
      if (msb < 112) result <<= 112 - msb;
      else if (msb > 112) result >>= msb - 112;

      result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
      if (x < 0) result |= 0x80000000000000000000000000000000;

      return bytes16 (uint128 (result));
    }
  }

  /**
   * Convert quadruple precision number into signed 256-bit integer number
   * rounding towards zero.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 256-bit integer number
   */
  function toInt (bytes16 x) internal pure returns (int256) {
    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

    require (exponent <= 16638); // Overflow
    if (exponent < 16383) return 0; // Underflow

    uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
      0x10000000000000000000000000000;

    if (exponent < 16495) result >>= 16495 - exponent;
    else if (exponent > 16495) result <<= exponent - 16495;

    if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
      require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
      return -int256 (result); // We rely on overflow behavior here
    } else {
      require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return int256 (result);
    }
  }

  /**
   * Convert unsigned 256-bit integer number into quadruple precision number.
   *
   * @param x unsigned 256-bit integer number
   * @return quadruple precision number
   */
  function fromUInt (uint256 x) internal pure returns (bytes16) {
    if (x == 0) return bytes16 (0);
    else {
      uint256 result = x;

      uint256 msb = msb (result);
      if (msb < 112) result <<= 112 - msb;
      else if (msb > 112) result >>= msb - 112;

      result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;

      return bytes16 (uint128 (result));
    }
  }

  /**
   * Convert quadruple precision number into unsigned 256-bit integer number
   * rounding towards zero.  Revert on underflow.  Note, that negative floating
   * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
   * without error, because they are rounded to zero.
   *
   * @param x quadruple precision number
   * @return unsigned 256-bit integer number
   */
  function toUInt (bytes16 x) internal pure returns (uint256) {
    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

    if (exponent < 16383) return 0; // Underflow

    require (uint128 (x) < 0x80000000000000000000000000000000); // Negative

    require (exponent <= 16638); // Overflow
    uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
      0x10000000000000000000000000000;

    if (exponent < 16495) result >>= 16495 - exponent;
    else if (exponent > 16495) result <<= exponent - 16495;

    return result;
  }

  /**
   * Convert signed 128.128 bit fixed point number into quadruple precision
   * number.
   *
   * @param x signed 128.128 bit fixed point number
   * @return quadruple precision number
   */
  function from128x128 (int256 x) internal pure returns (bytes16) {
    if (x == 0) return bytes16 (0);
    else {
      // We rely on overflow behavior here
      uint256 result = uint256 (x > 0 ? x : -x);

      uint256 msb = msb (result);
      if (msb < 112) result <<= 112 - msb;
      else if (msb > 112) result >>= msb - 112;

      result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112;
      if (x < 0) result |= 0x80000000000000000000000000000000;

      return bytes16 (uint128 (result));
    }
  }

  /**
   * Convert quadruple precision number into signed 128.128 bit fixed point
   * number.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 128.128 bit fixed point number
   */
  function to128x128 (bytes16 x) internal pure returns (int256) {
    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

    require (exponent <= 16510); // Overflow
    if (exponent < 16255) return 0; // Underflow

    uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
      0x10000000000000000000000000000;

    if (exponent < 16367) result >>= 16367 - exponent;
    else if (exponent > 16367) result <<= exponent - 16367;

    if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
      require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
      return -int256 (result); // We rely on overflow behavior here
    } else {
      require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return int256 (result);
    }
  }

  /**
   * Convert signed 64.64 bit fixed point number into quadruple precision
   * number.
   *
   * @param x signed 64.64 bit fixed point number
   * @return quadruple precision number
   */
  function from64x64 (int128 x) internal pure returns (bytes16) {
    if (x == 0) return bytes16 (0);
    else {
      // We rely on overflow behavior here
      uint256 result = uint128 (x > 0 ? x : -x);

      uint256 msb = msb (result);
      if (msb < 112) result <<= 112 - msb;
      else if (msb > 112) result >>= msb - 112;

      result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112;
      if (x < 0) result |= 0x80000000000000000000000000000000;

      return bytes16 (uint128 (result));
    }
  }

  /**
   * Convert quadruple precision number into signed 64.64 bit fixed point
   * number.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 64.64 bit fixed point number
   */
  function to64x64 (bytes16 x) internal pure returns (int128) {
    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

    require (exponent <= 16446); // Overflow
    if (exponent < 16319) return 0; // Underflow

    uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
      0x10000000000000000000000000000;

    if (exponent < 16431) result >>= 16431 - exponent;
    else if (exponent > 16431) result <<= exponent - 16431;

    if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
      require (result <= 0x80000000000000000000000000000000);
      return -int128 (result); // We rely on overflow behavior here
    } else {
      require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
      return int128 (result);
    }
  }

  /**
   * Convert octuple precision number into quadruple precision number.
   *
   * @param x octuple precision number
   * @return quadruple precision number
   */
  function fromOctuple (bytes32 x) internal pure returns (bytes16) {
    bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;

    uint256 exponent = uint256 (x) >> 236 & 0x7FFFF;
    uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    if (exponent == 0x7FFFF) {
      if (significand > 0) return NaN;
      else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
    }

    if (exponent > 278526)
      return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
    else if (exponent < 245649)
      return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
    else if (exponent < 245761) {
      significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent;
      exponent = 0;
    } else {
      significand >>= 124;
      exponent -= 245760;
    }

    uint128 result = uint128 (significand | exponent << 112);
    if (negative) result |= 0x80000000000000000000000000000000;

    return bytes16 (result);
  }

  /**
   * Convert quadruple precision number into octuple precision number.
   *
   * @param x quadruple precision number
   * @return octuple precision number
   */
  function toOctuple (bytes16 x) internal pure returns (bytes32) {
    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

    uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN
    else if (exponent == 0) {
      if (result > 0) {
        uint256 msb = msb (result);
        result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        exponent = 245649 + msb;
      }
    } else {
      result <<= 124;
      exponent += 245760;
    }

    result |= exponent << 236;
    if (uint128 (x) >= 0x80000000000000000000000000000000)
      result |= 0x8000000000000000000000000000000000000000000000000000000000000000;

    return bytes32 (result);
  }

  /**
   * Convert double precision number into quadruple precision number.
   *
   * @param x double precision number
   * @return quadruple precision number
   */
  function fromDouble (bytes8 x) internal pure returns (bytes16) {
    uint256 exponent = uint64 (x) >> 52 & 0x7FF;

    uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF;

    if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN
    else if (exponent == 0) {
      if (result > 0) {
        uint256 msb = msb (result);
        result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        exponent = 15309 + msb;
      }
    } else {
      result <<= 60;
      exponent += 15360;
    }

    result |= exponent << 112;
    if (x & 0x8000000000000000 > 0)
      result |= 0x80000000000000000000000000000000;

    return bytes16 (uint128 (result));
  }

  /**
   * Convert quadruple precision number into double precision number.
   *
   * @param x quadruple precision number
   * @return double precision number
   */
  function toDouble (bytes16 x) internal pure returns (bytes8) {
    bool negative = uint128 (x) >= 0x80000000000000000000000000000000;

    uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
    uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    if (exponent == 0x7FFF) {
      if (significand > 0) return 0x7FF8000000000000; // NaN
      else return negative ?
          bytes8 (0xFFF0000000000000) : // -Infinity
          bytes8 (0x7FF0000000000000); // Infinity
    }

    if (exponent > 17406)
      return negative ?
          bytes8 (0xFFF0000000000000) : // -Infinity
          bytes8 (0x7FF0000000000000); // Infinity
    else if (exponent < 15309)
      return negative ?
          bytes8 (0x8000000000000000) : // -0
          bytes8 (0x0000000000000000); // 0
    else if (exponent < 15361) {
      significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent;
      exponent = 0;
    } else {
      significand >>= 60;
      exponent -= 15360;
    }

    uint64 result = uint64 (significand | exponent << 52);
    if (negative) result |= 0x8000000000000000;

    return bytes8 (result);
  }

  /**
   * Test whether given quadruple precision number is NaN.
   *
   * @param x quadruple precision number
   * @return true if x is NaN, false otherwise
   */
  function isNaN (bytes16 x) internal pure returns (bool) {
    return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
      0x7FFF0000000000000000000000000000;
  }

  /**
   * Test whether given quadruple precision number is positive or negative
   * infinity.
   *
   * @param x quadruple precision number
   * @return true if x is positive or negative infinity, false otherwise
   */
  function isInfinity (bytes16 x) internal pure returns (bool) {
    return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ==
      0x7FFF0000000000000000000000000000;
  }

  /**
   * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
   * is positive.  Note that sign (-0) is zero.  Revert if x is NaN. 
   *
   * @param x quadruple precision number
   * @return sign of x
   */
  function sign (bytes16 x) internal pure returns (int8) {
    uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

    if (absoluteX == 0) return 0;
    else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1;
    else return 1;
  }

  /**
   * Calculate sign (x - y).  Revert if either argument is NaN, or both
   * arguments are infinities of the same sign. 
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return sign (x - y)
   */
  function cmp (bytes16 x, bytes16 y) internal pure returns (int8) {
    uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

    uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN

    // Not infinities of the same sign
    require (x != y || absoluteX < 0x7FFF0000000000000000000000000000);

    if (x == y) return 0;
    else {
      bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000;
      bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000;

      if (negativeX) {
        if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1);
        else return -1; 
      } else {
        if (negativeY) return 1;
        else return absoluteX > absoluteY ? int8 (1) : -1;
      }
    }
  }

  /**
   * Test whether x equals y.  NaN, infinity, and -infinity are not equal to
   * anything. 
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return true if x equals to y, false otherwise
   */
  function eq (bytes16 x, bytes16 y) internal pure returns (bool) {
    if (x == y) {
      return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF <
        0x7FFF0000000000000000000000000000;
    } else return false;
  }

  /**
   * Calculate x + y.  Special values behave in the following way:
   *
   * NaN + x = NaN for any x.
   * Infinity + x = Infinity for any finite x.
   * -Infinity + x = -Infinity for any finite x.
   * Infinity + Infinity = Infinity.
   * -Infinity + -Infinity = -Infinity.
   * Infinity + -Infinity = -Infinity + Infinity = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function add (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
    uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

    if (xExponent == 0x7FFF) {
      if (yExponent == 0x7FFF) { 
        if (x == y) return x;
        else return NaN;
      } else return x; 
    } else if (yExponent == 0x7FFF) return y;
    else {
      bool xSign = uint128 (x) >= 0x80000000000000000000000000000000;
      uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (xExponent == 0) xExponent = 1;
      else xSignifier |= 0x10000000000000000000000000000;

      bool ySign = uint128 (y) >= 0x80000000000000000000000000000000;
      uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (yExponent == 0) yExponent = 1;
      else ySignifier |= 0x10000000000000000000000000000;

      if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
      else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
      else {
        int256 delta = int256 (xExponent) - int256 (yExponent);
  
        if (xSign == ySign) {
          if (delta > 112) return x;
          else if (delta > 0) ySignifier >>= uint256 (delta);
          else if (delta < -112) return y;
          else if (delta < 0) {
            xSignifier >>= uint256 (-delta);
            xExponent = yExponent;
          }
  
          xSignifier += ySignifier;
  
          if (xSignifier >= 0x20000000000000000000000000000) {
            xSignifier >>= 1;
            xExponent += 1;
          }
  
          if (xExponent == 0x7FFF)
            return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
          else {
            if (xSignifier < 0x10000000000000000000000000000) xExponent = 0;
            else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
  
            return bytes16 (uint128 (
                (xSign ? 0x80000000000000000000000000000000 : 0) |
                (xExponent << 112) |
                xSignifier)); 
          }
        } else {
          if (delta > 0) {
            xSignifier <<= 1;
            xExponent -= 1;
          } else if (delta < 0) {
            ySignifier <<= 1;
            xExponent = yExponent - 1;
          }

          if (delta > 112) ySignifier = 1;
          else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1;
          else if (delta < -112) xSignifier = 1;
          else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1;

          if (xSignifier >= ySignifier) xSignifier -= ySignifier;
          else {
            xSignifier = ySignifier - xSignifier;
            xSign = ySign;
          }

          if (xSignifier == 0)
            return POSITIVE_ZERO;

          uint256 msb = msb (xSignifier);

          if (msb == 113) {
            xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            xExponent += 1;
          } else if (msb < 112) {
            uint256 shift = 112 - msb;
            if (xExponent > shift) {
              xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              xExponent -= shift;
            } else {
              xSignifier <<= xExponent - 1;
              xExponent = 0;
            }
          } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

          if (xExponent == 0x7FFF)
            return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
          else return bytes16 (uint128 (
              (xSign ? 0x80000000000000000000000000000000 : 0) |
              (xExponent << 112) |
              xSignifier));
        }
      }
    }
  }

  /**
   * Calculate x - y.  Special values behave in the following way:
   *
   * NaN - x = NaN for any x.
   * Infinity - x = Infinity for any finite x.
   * -Infinity - x = -Infinity for any finite x.
   * Infinity - -Infinity = Infinity.
   * -Infinity - Infinity = -Infinity.
   * Infinity - Infinity = -Infinity - -Infinity = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    return add (x, y ^ 0x80000000000000000000000000000000);
  }

  /**
   * Calculate x * y.  Special values behave in the following way:
   *
   * NaN * x = NaN for any x.
   * Infinity * x = Infinity for any finite positive x.
   * Infinity * x = -Infinity for any finite negative x.
   * -Infinity * x = -Infinity for any finite positive x.
   * -Infinity * x = Infinity for any finite negative x.
   * Infinity * 0 = NaN.
   * -Infinity * 0 = NaN.
   * Infinity * Infinity = Infinity.
   * Infinity * -Infinity = -Infinity.
   * -Infinity * Infinity = -Infinity.
   * -Infinity * -Infinity = Infinity.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
    uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

    if (xExponent == 0x7FFF) {
      if (yExponent == 0x7FFF) {
        if (x == y) return x ^ y & 0x80000000000000000000000000000000;
        else if (x ^ y == 0x80000000000000000000000000000000) return x | y;
        else return NaN;
      } else {
        if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
        else return x ^ y & 0x80000000000000000000000000000000;
      }
    } else if (yExponent == 0x7FFF) {
        if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
        else return y ^ x & 0x80000000000000000000000000000000;
    } else {
      uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (xExponent == 0) xExponent = 1;
      else xSignifier |= 0x10000000000000000000000000000;

      uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (yExponent == 0) yExponent = 1;
      else ySignifier |= 0x10000000000000000000000000000;

      xSignifier *= ySignifier;
      if (xSignifier == 0)
        return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
            NEGATIVE_ZERO : POSITIVE_ZERO;

      xExponent += yExponent;

      uint256 msb =
        xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 :
        xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 :
        msb (xSignifier);

      if (xExponent + msb < 16496) { // Underflow
        xExponent = 0;
        xSignifier = 0;
      } else if (xExponent + msb < 16608) { // Subnormal
        if (xExponent < 16496)
          xSignifier >>= 16496 - xExponent;
        else if (xExponent > 16496)
          xSignifier <<= xExponent - 16496;
        xExponent = 0;
      } else if (xExponent + msb > 49373) {
        xExponent = 0x7FFF;
        xSignifier = 0;
      } else {
        if (msb > 112)
          xSignifier >>= msb - 112;
        else if (msb < 112)
          xSignifier <<= 112 - msb;

        xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

        xExponent = xExponent + msb - 16607;
      }

      return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
          xExponent << 112 | xSignifier));
    }
  }

  /**
   * Calculate x / y.  Special values behave in the following way:
   *
   * NaN / x = NaN for any x.
   * x / NaN = NaN for any x.
   * Infinity / x = Infinity for any finite non-negative x.
   * Infinity / x = -Infinity for any finite negative x including -0.
   * -Infinity / x = -Infinity for any finite non-negative x.
   * -Infinity / x = Infinity for any finite negative x including -0.
   * x / Infinity = 0 for any finite non-negative x.
   * x / -Infinity = -0 for any finite non-negative x.
   * x / Infinity = -0 for any finite non-negative x including -0.
   * x / -Infinity = 0 for any finite non-negative x including -0.
   * 
   * Infinity / Infinity = NaN.
   * Infinity / -Infinity = -NaN.
   * -Infinity / Infinity = -NaN.
   * -Infinity / -Infinity = NaN.
   *
   * Division by zero behaves in the following way:
   *
   * x / 0 = Infinity for any finite positive x.
   * x / -0 = -Infinity for any finite positive x.
   * x / 0 = -Infinity for any finite negative x.
   * x / -0 = Infinity for any finite negative x.
   * 0 / 0 = NaN.
   * 0 / -0 = NaN.
   * -0 / 0 = NaN.
   * -0 / -0 = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function div (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
    uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

    if (xExponent == 0x7FFF) {
      if (yExponent == 0x7FFF) return NaN;
      else return x ^ y & 0x80000000000000000000000000000000;
    } else if (yExponent == 0x7FFF) {
      if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
      else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000;
    } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
      if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
      else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000;
    } else {
      uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (yExponent == 0) yExponent = 1;
      else ySignifier |= 0x10000000000000000000000000000;

      uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (xExponent == 0) {
        if (xSignifier != 0) {
          uint shift = 226 - msb (xSignifier);

          xSignifier <<= shift;

          xExponent = 1;
          yExponent += shift - 114;
        }
      }
      else {
        xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
      }

      xSignifier = xSignifier / ySignifier;
      if (xSignifier == 0)
        return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
            NEGATIVE_ZERO : POSITIVE_ZERO;

      assert (xSignifier >= 0x1000000000000000000000000000);

      uint256 msb =
        xSignifier >= 0x80000000000000000000000000000 ? msb (xSignifier) :
        xSignifier >= 0x40000000000000000000000000000 ? 114 :
        xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;

      if (xExponent + msb > yExponent + 16497) { // Overflow
        xExponent = 0x7FFF;
        xSignifier = 0;
      } else if (xExponent + msb + 16380  < yExponent) { // Underflow
        xExponent = 0;
        xSignifier = 0;
      } else if (xExponent + msb + 16268  < yExponent) { // Subnormal
        if (xExponent + 16380 > yExponent)
          xSignifier <<= xExponent + 16380 - yExponent;
        else if (xExponent + 16380 < yExponent)
          xSignifier >>= yExponent - xExponent - 16380;

        xExponent = 0;
      } else { // Normal
        if (msb > 112)
          xSignifier >>= msb - 112;

        xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

        xExponent = xExponent + msb + 16269 - yExponent;
      }

      return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
          xExponent << 112 | xSignifier));
    }
  }

  /**
   * Calculate -x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function neg (bytes16 x) internal pure returns (bytes16) {
    return x ^ 0x80000000000000000000000000000000;
  }

  /**
   * Calculate |x|.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function abs (bytes16 x) internal pure returns (bytes16) {
    return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
  }

  /**
   * Calculate square root of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function sqrt (bytes16 x) internal pure returns (bytes16) {
    if (uint128 (x) >  0x80000000000000000000000000000000) return NaN;
    else {
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      if (xExponent == 0x7FFF) return x;
      else {
        uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xExponent == 0) xExponent = 1;
        else xSignifier |= 0x10000000000000000000000000000;

        if (xSignifier == 0) return POSITIVE_ZERO;

        bool oddExponent = xExponent & 0x1 == 0;
        xExponent = xExponent + 16383 >> 1;

        if (oddExponent) {
          if (xSignifier >= 0x10000000000000000000000000000)
            xSignifier <<= 113;
          else {
            uint256 msb = msb (xSignifier);
            uint256 shift = (226 - msb) & 0xFE;
            xSignifier <<= shift;
            xExponent -= shift - 112 >> 1;
          }
        } else {
          if (xSignifier >= 0x10000000000000000000000000000)
            xSignifier <<= 112;
          else {
            uint256 msb = msb (xSignifier);
            uint256 shift = (225 - msb) & 0xFE;
            xSignifier <<= shift;
            xExponent -= shift - 112 >> 1;
          }
        }

        uint256 r = 0x10000000000000000000000000000;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1;
        r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
        uint256 r1 = xSignifier / r;
        if (r1 < r) r = r1;

        return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
      }
    }
  }

  /**
   * Calculate binary logarithm of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function log_2 (bytes16 x) internal pure returns (bytes16) {
    if (uint128 (x) > 0x80000000000000000000000000000000) return NaN;
    else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO; 
    else {
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      if (xExponent == 0x7FFF) return x;
      else {
        uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xExponent == 0) xExponent = 1;
        else xSignifier |= 0x10000000000000000000000000000;

        if (xSignifier == 0) return NEGATIVE_INFINITY;

        bool resultNegative;
        uint256 resultExponent = 16495;
        uint256 resultSignifier;

        if (xExponent >= 0x3FFF) {
          resultNegative = false;
          resultSignifier = xExponent - 0x3FFF;
          xSignifier <<= 15;
        } else {
          resultNegative = true;
          if (xSignifier >= 0x10000000000000000000000000000) {
            resultSignifier = 0x3FFE - xExponent;
            xSignifier <<= 15;
          } else {
            uint256 msb = msb (xSignifier);
            resultSignifier = 16493 - msb;
            xSignifier <<= 127 - msb;
          }
        }

        if (xSignifier == 0x80000000000000000000000000000000) {
          if (resultNegative) resultSignifier += 1;
          uint256 shift = 112 - msb (resultSignifier);
          resultSignifier <<= shift;
          resultExponent -= shift;
        } else {
          uint256 bb = resultNegative ? 1 : 0;
          while (resultSignifier < 0x10000000000000000000000000000) {
            resultSignifier <<= 1;
            resultExponent -= 1;
  
            xSignifier *= xSignifier;
            uint256 b = xSignifier >> 255;
            resultSignifier += b ^ bb;
            xSignifier >>= 127 + b;
          }
        }

        return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) |
            resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
      }
    }
  }

  /**
   * Calculate natural logarithm of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function ln (bytes16 x) internal pure returns (bytes16) {
    return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5);
  }

  /**
   * Calculate 2^x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function pow_2 (bytes16 x) internal pure returns (bytes16) {
    bool xNegative = uint128 (x) > 0x80000000000000000000000000000000;
    uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
    uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    if (xExponent == 0x7FFF && xSignifier != 0) return NaN;
    else if (xExponent > 16397)
      return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
    else if (xExponent < 16255)
      return 0x3FFF0000000000000000000000000000;
    else {
      if (xExponent == 0) xExponent = 1;
      else xSignifier |= 0x10000000000000000000000000000;

      if (xExponent > 16367)
        xSignifier <<= xExponent - 16367;
      else if (xExponent < 16367)
        xSignifier >>= 16367 - xExponent;

      if (xNegative && xSignifier > 0x406E00000000000000000000000000000000)
        return POSITIVE_ZERO;

      if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        return POSITIVE_INFINITY;

      uint256 resultExponent = xSignifier >> 128;
      xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
      if (xNegative && xSignifier != 0) {
        xSignifier = ~xSignifier;
        resultExponent += 1;
      }

      uint256 resultSignifier = 0x80000000000000000000000000000000;
      if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
      if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
      if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
      if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
      if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
      if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
      if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
      if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
      if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
      if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
      if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
      if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
      if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
      if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
      if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128;
      if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
      if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
      if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
      if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128;
      if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
      if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
      if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
      if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
      if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
      if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
      if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
      if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
      if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
      if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
      if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
      if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
      if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
      if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
      if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
      if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128;
      if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
      if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
      if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
      if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
      if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128;
      if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
      if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128;
      if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128;
      if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128;
      if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
      if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
      if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128;
      if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
      if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
      if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128;
      if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128;
      if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
      if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
      if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128;
      if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128;
      if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128;
      if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
      if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
      if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128;
      if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128;
      if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
      if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
      if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128;
      if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128;
      if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128;
      if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128;
      if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128;
      if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128;
      if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128;
      if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128;
      if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128;
      if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128;
      if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128;
      if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128;
      if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128;
      if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128;
      if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128;
      if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128;
      if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128;
      if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128;
      if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128;
      if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128;
      if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128;
      if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128;
      if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128;
      if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128;
      if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128;
      if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128;
      if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128;
      if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128;
      if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128;
      if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128;
      if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128;
      if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128;
      if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128;
      if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128;
      if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128;
      if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128;
      if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128;
      if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128;
      if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128;
      if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128;
      if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128;
      if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128;
      if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128;
      if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128;
      if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128;
      if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128;
      if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128;
      if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128;
      if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128;
      if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128;
      if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128;
      if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128;
      if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128;
      if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128;
      if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128;
      if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128;
      if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128;
      if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128;
      if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128;
      if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128;
      if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128;
      if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128;
      if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128;
      if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128;

      if (!xNegative) {
        resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        resultExponent += 0x3FFF;
      } else if (resultExponent <= 0x3FFE) {
        resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        resultExponent = 0x3FFF - resultExponent;
      } else {
        resultSignifier = resultSignifier >> resultExponent - 16367;
        resultExponent = 0;
      }

      return bytes16 (uint128 (resultExponent << 112 | resultSignifier));
    }
  }

  /**
   * Calculate e^x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function exp (bytes16 x) internal pure returns (bytes16) {
    return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
  }

  /**
   * Get index of the most significant non-zero bit in binary representation of
   * x.  Reverts if x is zero.
   *
   * @return index of the most significant non-zero bit in binary representation
   *         of x
   */
  function msb (uint256 x) private pure returns (uint256) {
    require (x > 0);

    uint256 result = 0;

    if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; }
    if (x >= 0x10000000000000000) { x >>= 64; result += 64; }
    if (x >= 0x100000000) { x >>= 32; result += 32; }
    if (x >= 0x10000) { x >>= 16; result += 16; }
    if (x >= 0x100) { x >>= 8; result += 8; }
    if (x >= 0x10) { x >>= 4; result += 4; }
    if (x >= 0x4) { x >>= 2; result += 2; }
    if (x >= 0x2) result += 1; // No need to shift x anymore

    return result;
  }
}

// File: contracts/shared/libraries/Percentages.sol

pragma solidity ^0.7.0;


/**
 * @title Percentage Helpers for Grant Contracts.
 * @dev   Used to offer pro-rata refunds and proportionate payment splitting among grantees
 *        without loss of precision when handling tokens with large supply.
 * @author @NoahMarconi
 */
library Percentages {

    /**
     * @dev Calculate quad point percentage from two uint256 values.
     * @param numerator division numerator.
     * @param denominator division denominator.
     */
    function percentage(uint256 numerator, uint256 denominator)
        internal
        pure
        returns (bytes16)
    {
        bytes16 num = ABDKMathQuad.fromUInt(numerator);
        bytes16 den = ABDKMathQuad.fromUInt(denominator);

        return ABDKMathQuad.div(num, den);
    }

    /**
     * @dev Multiply a quad point percentage by a uint256 value.
     * @param percent percent of total.
     * @param total total to get percent value from.
     */
    function percentTimesTotal(bytes16 percent, uint256 total)
        internal
        pure
        returns (uint256)
    {
        bytes16 tot = ABDKMathQuad.fromUInt(total);
        bytes16 res = ABDKMathQuad.mul(tot, percent);

        return ABDKMathQuad.toUInt(res);
    }

    /**
     * @dev Determine the maxiumum allocation for a Donor or Grantee.
     * @param contribution their contribution to total.
     * @param totalPool total pool to derive percentage owed from.
     * @param remainingPool remaining pool to split between Donors or Grantees.
     */
    function maxAllocation(uint256 contribution, uint256 totalPool, uint256 remainingPool)
        internal
        pure
        returns (uint256)
    {
        bytes16 contributionPercent = Percentages.percentage(
            contribution,
            totalPool
        );

        uint256 contributionMaxAllocation = Percentages.percentTimesTotal(
            contributionPercent,
            remainingPool
        );

        return contributionMaxAllocation;
    }
}

// File: @openzeppelin/contracts/math/SafeMath.sol

pragma solidity ^0.7.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: contracts/shared/interfaces/IGrantee.sol

pragma solidity ^0.7.0;

/**
 * @title Grants Spec Abstract Contract.
 * @dev Grant request, funding, and management.
 * @author @NoahMarconi
 */
interface IGrantee {


    /*----------  Global Variable Getters  ----------*/

   /**
     * @dev  Overall funding target for all grantees combined.
     */
    function getCumulativeTargetFunding()
        external
        view
        returns(uint256);

    /**
     * @dev  Grantee amounts are percentage based (if true) or fixed (if false).
     */
    function getPercentageBased()
        external
        view
        returns(bool);

    /*----------  Shared Getters  ----------*/

    /**
     * @dev Get number of grantees.
     * @return number of grantees.
     */
    function getGranteeReferenceLength()
        external
        view
        returns(uint256);

    /**
     * @dev Get grantee address by index.
     * @param index index of grantee to get.
     * @return grantee address.
     */
    function getGranteeReference(uint256 index)
        external
        view
        returns(address);

    /**
     * @dev Get grantee target funding by address.
     * @param grantee address of grantee to set.
     * @return target funding.
     */
    function getGranteeTargetFunding(address grantee)
        external
        view
        returns(uint256);

    /**
     * @dev Get grantee total amount paid by address.
     * @param grantee address of grantee to set.
     * @return total paid.
     */
    function getGranteeTotalPaid(address grantee)
        external
        view
        returns(uint256);

    /**
     * @dev Get grantee payout approved paid by address.
     * @param grantee address of grantee to set.
     * @return payout approved.
     */
    function getGranteePayoutApproved(address grantee)
        external
        view
        returns(uint256);

}

// File: contracts/shared/storage/Grantee.sol

pragma solidity ^0.7.0;

/**
 * @title Grantee State Management Contract.
 * @dev State, getters, and setters for Grantees.
 * @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
 */
abstract contract Grantee is IGrantee {

    /*----------  Globals  ----------*/

    mapping(address => uint256) private granteeTargetFunding;  // Funding amount targeted for Grantee.
    mapping(address => uint256) private granteeTotalPaid;      // Cumulative funding received by Grantee.
    mapping(address => uint256) private granteePayoutApproved; // Pending payout approved by Manager.

    address[] private granteeReference;                        // Reference to grantee addresses to allow for iterating over grantees.

    uint256 private cumulativeTargetFunding;                   // Denominator for calculating grantee's percentage.
    bool private percentageBased = false;                      // Grantee amounts are percentage based (if true) or fixed (if false).



    /*----------  Global Variable Getters  ----------*/

   /**
     * @dev  Overall funding target for all grantees combined.
     */
    function getCumulativeTargetFunding()
        public
        view
        override
        returns(uint256)
    {
        return cumulativeTargetFunding;
    }

    /**
     * @dev  Grantee amounts are percentage based (if true) or fixed (if false).
     */
    function getPercentageBased()
        public
        view
        override
        returns(bool)
    {
        return percentageBased;
    }

    /*----------  Global Variable Setters  ----------*/

    /**
     * @dev  Overall funding target for all grantees combined.
     * @param value cumulative target funding to set.
     */
    function setPercentageBased(bool value)
        internal
    {
        percentageBased = value;
    }

    /**
     * @dev  Set grantee targets as either fixed or percentage based.
     * @param value cumulative target funding to set.
     */
    function setCumulativeTargetFunding(uint256 value)
        internal
    {
        cumulativeTargetFunding = value;
    }


    /*----------  Grantee Getters  ----------*/

    /**
     * @dev Get number of grantees.
     * @return number of grantees.
     */
    function getGranteeReferenceLength()
        public
        override
        view
        returns(uint256)
    {
        return granteeReference.length;
    }

    /**
     * @dev Get grantee address by index.
     * @param index index of grantee to get.
     * @return grantee address.
     */
    function getGranteeReference(uint256 index)
        public
        override
        view
        returns(address)
    {
        return granteeReference[index];
    }

    /**
     * @dev Get grantee target funding by address.
     * @param grantee address of grantee to set.
     * @return target funding.
     */
    function getGranteeTargetFunding(address grantee)
        public
        override
        view
        returns(uint256)
    {
        return granteeTargetFunding[grantee];
    }

    /**
     * @dev Get grantee total amount paid by address.
     * @param grantee address of grantee to set.
     * @return total paid.
     */
    function getGranteeTotalPaid(address grantee)
        public
        override
        view
        returns(uint256)
    {
        return granteeTotalPaid[grantee];
    }

    /**
     * @dev Get grantee payout approved paid by address.
     * @param grantee address of grantee to set.
     * @return payout approved.
     */
    function getGranteePayoutApproved(address grantee)
        public
        override
        view
        returns(uint256)
    {
        return granteePayoutApproved[grantee];
    }

    /*----------  Grantee Setters  ----------*/


    /**
     * @dev Add grantee address to reference array.
     * @param grantee grantee address to add.
     */
    function addGranteeReference(address grantee)
        internal
    {
        return granteeReference.push(grantee);
    }

    /**
     * @dev Set grantee target funding by address.
     * @param grantee address of grantee to set.
     * @param value target funding to set.
     */
    function setGranteeTargetFunding(address grantee, uint256 value)
        internal
    {
        granteeTargetFunding[grantee] = value;
    }

    /**
     * @dev Set grantee total amount paid by address.
     * @param grantee address of grantee to set.
     * @param value total paid to set.
     */
    function setGranteeTotalPaid(address grantee, uint256 value)
        internal
    {
        granteeTotalPaid[grantee] = value;
    }

    /**
     * @dev Set grantee payout approved paid by address.
     * @param grantee address of grantee to set.
     * @param value payout approved to set.
     */
    function setGranteePayoutApproved(address grantee, uint256 value)
        internal
    {
        granteePayoutApproved[grantee] = value;
    }

}

// File: contracts/shared/modules/GranteeConstructor.sol

pragma solidity ^0.7.0;

contract GranteeConstructor is Grantee {
    using SafeMath for uint256;

    /*----------  Constructor  ----------*/

    /**
     * @dev Grant creation function. May be called by donors, grantees, or any other relevant party.
     * @param _grantees Sorted recipients of donated funds.
     * @param _amounts Respective allocations for each Grantee (must follow sort order of _grantees).
     * @param _percentageBased Grantee amounts are percentage based (if true) or fixed (if false).
     */
    constructor(
        address[] memory _grantees,
        uint256[] memory _amounts,
        bool _percentageBased
    )
    {

        require(
            _grantees.length > 0,
            "constructor::Invalid Argument. Must have one or more grantees."
        );

        require(
            _grantees.length == _amounts.length,
            "constructor::Invalid Argument. _grantees.length must equal _amounts.length"
        );


        // Initialize Grantees.
        address lastAddress = address(0);
        uint256 _cumulativeTargetFunding = 0;
        for (uint256 i = 0; i < _grantees.length; i++) {
            address currentGrantee = _grantees[i];
            uint256 currentAmount = _amounts[i];

            require(
                currentAmount > 0,
                "constructor::Invalid Argument. currentAmount must be greater than 0."
            );

            require(
                currentGrantee != address(0),
                "constructor::Invalid Argument. grantee address cannot be a ADDRESS_ZERO."
            );

            require(
                currentGrantee > lastAddress,
                "constructor::Invalid Argument. Duplicate or out of order _grantees."
            );


            lastAddress = currentGrantee;
            setGranteeTargetFunding(currentGrantee, currentAmount);

            _cumulativeTargetFunding = _cumulativeTargetFunding.add(currentAmount);

            // Store address as reference.
            addGranteeReference(currentGrantee);
        }

        setCumulativeTargetFunding(_cumulativeTargetFunding);
        setPercentageBased(_percentageBased);

    }

}

// File: contracts/shared/interfaces/IFunding.sol

pragma solidity ^0.7.0;

/**
 * @title Grants Spec Abstract Contract.
 * @dev Grant request, funding, and management.
 * @author @NoahMarconi
 */
interface IFunding {

    /*----------  Events  ----------*/

    /**
     * @dev Funding target reached event.
     */
    event LogFundingComplete();

    /**
     * @dev Grant received funding.
     * @param donor Address funding the grant.
     * @param value Amount in WEI or ATOMIC_UNITS funded.
     */
    event LogFunding(address indexed donor, uint256 value);


    /*----------  Shared Getters  ----------*/

    /**
     * @dev Cumulative funding donated by donors.
     */
    function getTotalFunding()
        external
        view
        returns(uint256);


}

// File: contracts/shared/storage/Funding.sol

pragma solidity ^0.7.0;

/**
 * @title Total Funding.
 * @dev Handles state for tracking contract total amount funded.
 * @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
 */
abstract contract Funding is IFunding {
    using SafeMath for uint256;


    /*----------  Globals  ----------*/

    /* solhint-disable max-line-length */
    uint256 private totalFunding;                 // Cumulative funding donated by donors.
    /* solhint-enable max-line-length */


    /*----------  Shared Getters  ----------*/

    /**
     * @dev Cumulative funding donated by donors.
     */
    function getTotalFunding()
        public
        override
        view
        returns(uint256)
    {
        return totalFunding;
    }


    /*----------  Shared Setters  ----------*/

    /**
     * @dev Increase cumulative funding donated by donors.
     * @param value amount to increase total funding by.
     */
    function increaseTotalFundingBy(uint256 value)
        internal
    {
        totalFunding = totalFunding.add(value);
    }

    function setTotalFunding(uint256 value)
        internal
    {
        totalFunding = value;
    }

}

// File: contracts/shared/interfaces/IBaseGrant.sol

pragma solidity ^0.7.0;

/**
 * @title Grants Spec Abstract Contract.
 * @dev Grant request, funding, and management.
 * @author @NoahMarconi
 */
interface IBaseGrant {

    /*----------  Events  ----------*/

    /**
     * @dev Funding target reached event.
     * implemented in IFunding
     * event LogFundingComplete();
     */

    /**
     * @dev Grant received funding.
     * implemented in IFunding
     * @param donor Address funding the grant.
     * @param value Amount in WEI or ATOMIC_UNITS funded.
     * event LogFunding(address indexed donor, uint256 value);
     */

    /**
     * @dev Grant paying grantee.
     * @param grantee Address receiving payment.
     * @param value Amount in WEI or ATOMIC_UNITS paid.
     */
    event LogPayment(address indexed grantee, uint256 value);


    /*----------  Shared Getters  ----------*/

    /**
     * @dev URI for additional (off-chain) grant details such as description, milestones, etc.
     */
    function getUri()
        external
        view
        returns(bytes32);

    /**
     * @dev If null, amount is in wei, otherwise address of ERC20-compliant contract.
     */
    function getCurrency()
        external
        view
        returns(address);

    /**
     * @dev Funding threshold required to begin releasing funds.
     */
    function getTargetFunding()
        external
        view
        returns(uint256);

    /**
     * @dev Cumulative funding paid to grantees.
     */
    function getTotalPaid()
        external
        view
        returns(uint256);

    /**
     * @dev Date after which signal OR funds cannot be sent.
     */
    function getFundingDeadline()
        external
        view
        returns(uint256);

    /**
     * @dev Date after which payouts must be complete or anyone can trigger refunds.
     */
    function getContractExpiration()
        external
        view
        returns(uint256);

    /**
     * @dev Flag to indicate when grant is cancelled.
     */
    function getGrantCancelled()
        external
        view
        returns(bool);

}

// File: contracts/shared/storage/BaseGrant.sol

pragma solidity ^0.7.0;

/**
 * @title Base Grant State Management Contract.
 * @dev State, getters, and setters for BaseGrant.
 * @author @NoahMarconi @ameensol @JFickel @ArnaudBrousseau
 */
abstract contract BaseGrant is IBaseGrant {

    /*----------  Globals  ----------*/

    /* solhint-disable max-line-length */
    bytes32 private uri;                            // URI for additional (off-chain) grant details such as description, milestones, etc.
    address private currency;                     // (Optional) If null, amount is in wei, otherwise address of ERC20-compliant contract.
    uint256 private targetFunding;                // (Optional) Funding threshold required to begin releasing funds.
    uint256 private totalPaid;                    // Cumulative funding paid to grantees.
    uint256 private fundingDeadline;              // (Optional) Date after which signal OR funds cannot be sent.
    uint256 private contractExpiration;           // (Optional) Date after which payouts must be complete or anyone can trigger refunds.
    bool private grantCancelled;                  // Flag to indicate when grant is cancelled.
    /* solhint-enable max-line-length */


    /*----------  Shared Getters  ----------*/

    function getUri()
        public
        override
        view
        returns(bytes32)
    {
        return uri;
    }

    function getContractExpiration()
        public
        override
        view
        returns(uint256)
    {
        return contractExpiration;
    }

    function getFundingDeadline()
        public
        override
        view
        returns(uint256)
    {
        return fundingDeadline;
    }

    function getTargetFunding()
        public
        override
        view
        returns(uint256)
    {
        return targetFunding;
    }

    function getTotalPaid()
        public
        override
        view
        returns(uint256)
    {
        return totalPaid;
    }

    function getGrantCancelled()
        public
        override
        view
        returns(bool)
    {
        return grantCancelled;
    }

    function getCurrency()
        public
        override
        view
        returns(address)
    {
        return currency;
    }

    /*----------  Shared Setters  ----------*/

    function setTotalPaid(uint256 value)
        internal
    {
        totalPaid = value;
    }

    function setUri(bytes32 value)
        internal
    {
        uri = value;
    }

    function setGrantCancelled(bool value)
        internal
    {
        grantCancelled = value;
    }
}

// File: contracts/UnmanagedGrant.sol

pragma solidity ^0.7.0;

/**
 * @title Grant for Eth2.
 * @dev Managed                     (n)
 *      Funding Deadline            (n)
 *      Contract expiry             (n)
 *      With Token                  (n)
 *      Percentage based allocation (y)
 *      Withdraw (pull payment)     (n)
 *      This is a simplified grant which behaves as a simple payment splitter.
 *      No refunds or managers; payment are immediately pushed.
 *      WARNING: vulnerable to sending to Gas Token generating addresses. Trust in grantees not doing so is required.
 * @author @NoahMarconi
 */
contract UnmanagedGrant is ReentrancyGuard, BaseGrant, GranteeConstructor, Funding {


    /*----------  Constructor  ----------*/

    /**
     * @dev Grant creation function. May be called by grantors, grantees, or any other relevant party.
     * @param _grantees Sorted recipients of unlocked funds.
     * @param _amounts Respective allocations for each Grantee (must follow sort order of _grantees).
     * @param _uri URI for additional (off-chain) grant details such as description, milestones, etc.
     */
    constructor(
        address[] memory _grantees,
        uint256[] memory _amounts,
        bytes32 _uri
    )
        GranteeConstructor(_grantees, _amounts, true)
    {

        // Initialize globals.
        setUri(_uri);

    }


    /*----------  Fallback  ----------*/

    receive()
        external
        payable
        nonReentrant
    {

        require(
            msg.value > 0,
            "fallback::Invalid Value. msg.value must be greater than 0."
        );

        uint256 numGrantees = getGranteeReferenceLength();
        address lastGrantee = payable(getGranteeReference(numGrantees - 1));
        for (uint256 i = 0; i < numGrantees; i++) {
            address payable currentGrantee = payable(getGranteeReference(i));

            uint256 eligiblePortion = Percentages.maxAllocation(
                getGranteeTargetFunding(currentGrantee),
                getCumulativeTargetFunding(),
                msg.value
            );

            if (currentGrantee == lastGrantee) {
                // Handle rounding of a few wei.
                // @audit question for auditor, should we enforce this is within expected threshold?
                eligiblePortion = address(this).balance;
            }

            if (eligiblePortion > 0) {
                (bool success, ) = currentGrantee.call{ value: eligiblePortion}("");
                require(
                    success,
                    "fallback::Transfer Error. Unable to send eligiblePortion to Grantee."
                );
                emit LogPayment(currentGrantee, eligiblePortion);
            }

        }

        increaseTotalFundingBy(msg.value);

        emit LogFunding(msg.sender, msg.value);

    }

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):