ETH Price: $1,974.93 (+0.26%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Rescue Funds201418142024-06-21 18:13:23610 days ago1718993603IN
0xEEbA0e9e...b07F709cC
0 ETH0.000255927.28184977
Claim200606512024-06-10 9:50:59622 days ago1718013059IN
0xEEbA0e9e...b07F709cC
0 ETH0.000260664.949162
Claim200314402024-06-06 7:57:23626 days ago1717660643IN
0xEEbA0e9e...b07F709cC
0 ETH0.0013340219.36089251
Claim198412872024-05-10 18:00:11652 days ago1715364011IN
0xEEbA0e9e...b07F709cC
0 ETH0.0010514415.05743254
Claim197812452024-05-02 8:28:23661 days ago1714638503IN
0xEEbA0e9e...b07F709cC
0 ETH0.000632399.06726813
Claim197810322024-05-02 7:45:47661 days ago1714635947IN
0xEEbA0e9e...b07F709cC
0 ETH0.000320756.19033171
Claim197810312024-05-02 7:45:35661 days ago1714635935IN
0xEEbA0e9e...b07F709cC
0 ETH0.000317756.03027179
Claim197810302024-05-02 7:45:23661 days ago1714635923IN
0xEEbA0e9e...b07F709cC
0 ETH0.000417276.05700375
Claim197527612024-04-28 8:55:59665 days ago1714294559IN
0xEEbA0e9e...b07F709cC
0 ETH0.000442916.34715323
Claim197486802024-04-27 19:13:11665 days ago1714245191IN
0xEEbA0e9e...b07F709cC
0 ETH0.000254784.83629334
Claim197469392024-04-27 13:23:23665 days ago1714224203IN
0xEEbA0e9e...b07F709cC
0 ETH0.000315535.98679647
Claim197469372024-04-27 13:22:59665 days ago1714224179IN
0xEEbA0e9e...b07F709cC
0 ETH0.000337766.41150306
Claim197447042024-04-27 5:51:23666 days ago1714197083IN
0xEEbA0e9e...b07F709cC
0 ETH0.000304615.7770095
Claim197345702024-04-25 19:48:35667 days ago1714074515IN
0xEEbA0e9e...b07F709cC
0 ETH0.000465798.8338183
Claim197345542024-04-25 19:45:11667 days ago1714074311IN
0xEEbA0e9e...b07F709cC
0 ETH0.000447338.48369861
Claim197345462024-04-25 19:43:35667 days ago1714074215IN
0xEEbA0e9e...b07F709cC
0 ETH0.000683049.78506002
Claim197343502024-04-25 19:04:23667 days ago1714071863IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007455214.14196326
Claim197343492024-04-25 19:04:11667 days ago1714071851IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007645314.49927776
Claim197343482024-04-25 19:03:59667 days ago1714071839IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007277213.80751625
Claim197343462024-04-25 19:03:35667 days ago1714071815IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007411814.05004537
Claim197343452024-04-25 19:03:23667 days ago1714071803IN
0xEEbA0e9e...b07F709cC
0 ETH0.0006749812.82142279
Claim197343292024-04-25 19:00:11667 days ago1714071611IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007274713.80281991
Claim197343242024-04-25 18:59:11667 days ago1714071551IN
0xEEbA0e9e...b07F709cC
0 ETH0.0006382812.09953827
Claim197343182024-04-25 18:57:47667 days ago1714071467IN
0xEEbA0e9e...b07F709cC
0 ETH0.0007772814.74780666
Claim197343162024-04-25 18:57:23667 days ago1714071443IN
0xEEbA0e9e...b07F709cC
0 ETH0.0008749212.54250572
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SignatureMerkleDrop128

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { Ownable } from  "@openzeppelin/contracts/access/Ownable.sol";
import { SafeERC20, IERC20 } from  "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
import { ECDSA } from  "@1inch/solidity-utils/contracts/libraries/ECDSA.sol";

import { ISignatureMerkleDrop128 } from  "./interfaces/ISignatureMerkleDrop128.sol";

contract SignatureMerkleDrop128 is ISignatureMerkleDrop128, Ownable {
    using Address for address payable;
    using SafeERC20 for IERC20;

    /* solhint-disable immutable-vars-naming */
    address public immutable override token;
    bytes16 public immutable override merkleRoot;
    uint256 public immutable override depth;
    /* solhint-enable immutable-vars-naming */

    // This is a packed array of booleans.
    mapping(uint256 => uint256) private _claimedBitMap;

    uint256 private constant _CLAIM_GAS_COST = 60000;

    receive() external payable {}  // solhint-disable-line no-empty-blocks

    constructor(address token_, bytes16 merkleRoot_, uint256 depth_) Ownable(msg.sender) {
        token = token_;
        merkleRoot = merkleRoot_;
        depth = depth_;
    }

    function claim(address receiver, uint256 amount, bytes calldata merkleProof, bytes calldata signature) external override {
        bytes32 signedHash = ECDSA.toEthSignedMessageHash(keccak256(abi.encodePacked(receiver)));
        address account = ECDSA.recover(signedHash, signature);
        // Verify the merkle proof.
        bytes16 node = bytes16(keccak256(abi.encodePacked(account, amount)));
        (bool valid, uint256 index) = _verifyAsm(merkleProof, merkleRoot, node);
        if (!valid) revert InvalidProof();
        _invalidate(index);
        IERC20(token).safeTransfer(receiver, amount);
        _cashback();
    }

    function verify(bytes calldata proof, bytes16 root, bytes16 leaf) external view returns (bool valid, uint256 index) {
        return _verifyAsm(proof, root, leaf);
    }

    function verify(bytes calldata proof, bytes16 leaf) external view returns (bool valid, uint256 index) {
        return _verifyAsm(proof, merkleRoot, leaf);
    }

    function isClaimed(uint256 index) external view override returns (bool) {
        uint256 claimedWordIndex = index / 256;
        uint256 claimedBitIndex = index % 256;
        uint256 claimedWord = _claimedBitMap[claimedWordIndex];
        uint256 mask = (1 << claimedBitIndex);
        return claimedWord & mask == mask;
    }

    function _cashback() private {
        uint256 balance = address(this).balance;
        if (balance > 0) {
            // solhint-disable-next-line avoid-tx-origin
            payable(tx.origin).sendValue(Math.min(block.basefee * _CLAIM_GAS_COST, balance));
        }
    }

    function _invalidate(uint256 index) private {
        uint256 claimedWordIndex = index >> 8;
        uint256 claimedBitIndex = index & 0xff;
        uint256 claimedWord = _claimedBitMap[claimedWordIndex];
        uint256 newClaimedWord = claimedWord | (1 << claimedBitIndex);
        if (claimedWord == newClaimedWord) revert DropAlreadyClaimed();
        _claimedBitMap[claimedWordIndex] = newClaimedWord;
    }

    function _verifyAsm(bytes calldata proof, bytes16 root, bytes16 leaf) private view returns (bool valid, uint256 index) {
        /// @solidity memory-safe-assembly
        assembly {  // solhint-disable-line no-inline-assembly
            let ptr := proof.offset
            let mask := 1

            for { let end := add(ptr, proof.length) } lt(ptr, end) { ptr := add(ptr, 0x10) } {
                let node := calldataload(ptr)

                switch lt(leaf, node)
                case 1 {
                    mstore(0x00, leaf)
                    mstore(0x10, node)
                }
                default {
                    mstore(0x00, node)
                    mstore(0x10, leaf)
                    index := or(mask, index)
                }

                leaf := keccak256(0x00, 0x20)
                mask := shl(1, mask)
            }

            valid := iszero(shr(128, xor(root, leaf)))
        }
        unchecked {
            index <<= depth - proof.length / 16;
        }
    }

    function rescueFunds(address token_, uint256 amount) external onlyOwner {
        if (token_ == address(0)) {
            payable(msg.sender).sendValue(amount);
        } else {
            IERC20(token_).safeTransfer(msg.sender, amount);
        }
    }
}

File 2 of 16 : IDaiLikePermit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IDaiLikePermit
 * @dev Interface for Dai-like permit function allowing token spending via signatures.
 */
interface IDaiLikePermit {
    /**
     * @notice Approves spending of tokens via off-chain signatures.
     * @param holder Token holder's address.
     * @param spender Spender's address.
     * @param nonce Current nonce of the holder.
     * @param expiry Time when the permit expires.
     * @param allowed True to allow, false to disallow spending.
     * @param v, r, s Signature components.
     */
    function permit(
        address holder,
        address spender,
        uint256 nonce,
        uint256 expiry,
        bool allowed,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
}

File 3 of 16 : IERC7597Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IERC7597Permit
 * @dev A new extension for ERC-2612 permit, which has already been added to USDC v2.2.
 */
interface IERC7597Permit {
    /**
     * @notice Update allowance with a signed permit.
     * @dev Signature bytes can be used for both EOA wallets and contract wallets.
     * @param owner Token owner's address (Authorizer).
     * @param spender Spender's address.
     * @param value Amount of allowance.
     * @param deadline The time at which the signature expires (unixtime).
     * @param signature Unstructured bytes signature signed by an EOA wallet or a contract wallet.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        bytes memory signature
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IPermit2
 * @dev Interface for a flexible permit system that extends ERC20 tokens to support permits in tokens lacking native permit functionality.
 */
interface IPermit2 {
    /**
     * @dev Struct for holding permit details.
     * @param token ERC20 token address for which the permit is issued.
     * @param amount The maximum amount allowed to spend.
     * @param expiration Timestamp until which the permit is valid.
     * @param nonce An incrementing value for each signature, unique per owner, token, and spender.
     */
    struct PermitDetails {
        address token;
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @dev Struct for a single token allowance permit.
     * @param details Permit details including token, amount, expiration, and nonce.
     * @param spender Address authorized to spend the tokens.
     * @param sigDeadline Deadline for the permit signature, ensuring timeliness of the permit.
     */
    struct PermitSingle {
        PermitDetails details;
        address spender;
        uint256 sigDeadline;
    }

    /**
     * @dev Struct for packed allowance data to optimize storage.
     * @param amount Amount allowed.
     * @param expiration Permission expiry timestamp.
     * @param nonce Unique incrementing value for tracking allowances.
     */
    struct PackedAllowance {
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @notice Executes a token transfer from one address to another.
     * @param user The token owner's address.
     * @param spender The address authorized to spend the tokens.
     * @param amount The amount of tokens to transfer.
     * @param token The address of the token being transferred.
     */
    function transferFrom(address user, address spender, uint160 amount, address token) external;

    /**
     * @notice Issues a permit for spending tokens via a signed authorization.
     * @param owner The token owner's address.
     * @param permitSingle Struct containing the permit details.
     * @param signature The signature proving the owner authorized the permit.
     */
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    /**
     * @notice Retrieves the allowance details between a token owner and spender.
     * @param user The token owner's address.
     * @param token The token address.
     * @param spender The spender's address.
     * @return The packed allowance details.
     */
    function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IWETH
 * @dev Interface for wrapper as WETH-like token.
 */
interface IWETH is IERC20 {
    /**
     * @notice Emitted when Ether is deposited to get wrapper tokens.
     */
    event Deposit(address indexed dst, uint256 wad);

    /**
     * @notice Emitted when wrapper tokens is withdrawn as Ether.
     */
    event Withdrawal(address indexed src, uint256 wad);

    /**
     * @notice Deposit Ether to get wrapper tokens.
     */
    function deposit() external payable;

    /**
     * @notice Withdraw wrapped tokens as Ether.
     * @param amount Amount of wrapped tokens to withdraw.
     */
    function withdraw(uint256 amount) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/interfaces/IERC1271.sol";

/**
 * @title ECDSA signature operations
 * @notice Provides functions for recovering addresses from signatures and verifying signatures, including support for EIP-2098 compact signatures.
 */
library ECDSA {
    // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
    // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
    // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
    // signatures from current libraries generate a unique signature with an s-value in the lower half order.
    //
    // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
    // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
    // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
    // these malleable signatures as well.
    uint256 private constant _S_BOUNDARY = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 + 1;
    uint256 private constant _COMPACT_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
    uint256 private constant _COMPACT_V_SHIFT = 255;

    /**
     * @notice Recovers the signer's address from the signature.
     * @dev Recovers the address that has signed a hash with `(v, r, s)` signature.
     * @param hash The keccak256 hash of the data signed.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return signer The address of the signer.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            if lt(s, _S_BOUNDARY) {
                let ptr := mload(0x40)

                mstore(ptr, hash)
                mstore(add(ptr, 0x20), v)
                mstore(add(ptr, 0x40), r)
                mstore(add(ptr, 0x60), s)
                mstore(0, 0)
                pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                signer := mload(0)
            }
        }
    }

    /**
     * @notice Recovers the signer's address from the signature using `r` and `vs` components.
     * @dev Recovers the address that has signed a hash with `r` and `vs`, where `vs` combines `v` and `s`.
     * @param hash The keccak256 hash of the data signed.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` and `s` values of the signature.
     * @return signer The address of the signer.
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let s := and(vs, _COMPACT_S_MASK)
            if lt(s, _S_BOUNDARY) {
                let ptr := mload(0x40)

                mstore(ptr, hash)
                mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                mstore(add(ptr, 0x40), r)
                mstore(add(ptr, 0x60), s)
                mstore(0, 0)
                pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                signer := mload(0)
            }
        }
    }

    /**
     * @notice Recovers the signer's address from a hash and a signature.
     * @param hash The keccak256 hash of the signed data.
     * @param signature The full signature from which the signer will be recovered.
     * @return signer The address of the signer.
     */
    /// @dev WARNING!!!
    /// There is a known signature malleability issue with two representations of signatures!
    /// Even though this function is able to verify both standard 65-byte and compact 64-byte EIP-2098 signatures
    /// one should never use raw signatures for any kind of invalidation logic in their code.
    /// As the standard and compact representations are interchangeable any invalidation logic that relies on
    /// signature uniqueness will get rekt.
    /// More info: https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
    function recover(bytes32 hash, bytes calldata signature) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // memory[ptr:ptr+0x80] = (hash, v, r, s)
            switch signature.length
            case 65 {
                // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                mstore(add(ptr, 0x20), byte(0, calldataload(add(signature.offset, 0x40))))
                calldatacopy(add(ptr, 0x40), signature.offset, 0x40)
            }
            case 64 {
                // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                let vs := calldataload(add(signature.offset, 0x20))
                mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                calldatacopy(add(ptr, 0x40), signature.offset, 0x20)
                mstore(add(ptr, 0x60), and(vs, _COMPACT_S_MASK))
            }
            default {
                ptr := 0
            }

            if ptr {
                if lt(mload(add(ptr, 0x60)), _S_BOUNDARY) {
                    // memory[ptr:ptr+0x20] = (hash)
                    mstore(ptr, hash)

                    mstore(0, 0)
                    pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                    signer := mload(0)
                }
            }
        }
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param signature The signature to verify.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if ((signature.length == 64 || signature.length == 65) && recover(hash, signature) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, signature);
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, v, r, s) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, v, r, s);
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` and `s` values of the signature.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, r, vs) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, r, vs);
    }

    /**
     * @notice Verifies the signature for a given hash, attempting to recover the signer's address or validates it using EIP-1271 for 65-byte signatures.
     * @dev Attempts to recover the signer's address from the signature. If the address is a contract, checks if the signature is valid according to EIP-1271.
     * @param signer The expected signer's address.
     * @param hash The keccak256 hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The last 32 bytes of the signature, with the last byte being the recovery id.
     * @return success True if the signature is valid, false otherwise.
     */
    function recoverOrIsValidSignature65(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, r, vs) == signer) {
            return true;
        }
        return isValidSignature65(signer, hash, r, vs);
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param signature The signature to validate.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature));
        // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), signature.length)
            calldatacopy(add(ptr, 0x64), signature.offset, signature.length)
            if staticcall(gas(), signer, ptr, add(0x64, signature.length), 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (bool success) {
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 65)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), s)
            mstore8(add(ptr, 0xa4), v)
            if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The last 32 bytes of the signature, with the last byte being the recovery id.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs)));
        // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 64)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), vs)
            if staticcall(gas(), signer, ptr, 0xa4, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Verifies if a 65-byte signature is valid for a given hash, according to EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` (recovery id) and `s` component of the signature, packed into the last 32 bytes.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature65(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs & ~uint256(1 << 255), uint8(vs >> 255))));
        // return success && data.length >= 4 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 65)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), and(vs, _COMPACT_S_MASK))
            mstore8(add(ptr, 0xa4), add(27, shr(_COMPACT_V_SHIFT, vs)))
            if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Generates a hash compatible with Ethereum's signed message format.
     * @dev Prepends the hash with Ethereum's message prefix before hashing it.
     * @param hash The hash of the data to sign.
     * @return res The Ethereum signed message hash.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 res) {
        // 32 is the length in bytes of hash, enforced by the type signature above
        // return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0, 0x19457468657265756d205369676e6564204d6573736167653a0a333200000000) // "\x19Ethereum Signed Message:\n32"
            mstore(28, hash)
            res := keccak256(0, 60)
        }
    }

    /**
     * @notice Generates an EIP-712 compliant hash.
     * @dev Encodes the domain separator and the struct hash according to EIP-712.
     * @param domainSeparator The EIP-712 domain separator.
     * @param structHash The EIP-712 struct hash.
     * @return res The EIP-712 compliant hash.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 res) {
        // return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)
            mstore(ptr, 0x1901000000000000000000000000000000000000000000000000000000000000) // "\x19\x01"
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            res := keccak256(ptr, 66)
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title RevertReasonForwarder
 * @notice Provides utilities for forwarding and retrieving revert reasons from failed external calls.
 */
library RevertReasonForwarder {
    /**
     * @dev Forwards the revert reason from the latest external call.
     * This method allows propagating the revert reason of a failed external call to the caller.
     */
    function reRevert() internal pure {
        // bubble up revert reason from latest external call
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)
            returndatacopy(ptr, 0, returndatasize())
            revert(ptr, returndatasize())
        }
    }

    /**
     * @dev Retrieves the revert reason from the latest external call.
     * This method enables capturing the revert reason of a failed external call for inspection or processing.
     * @return reason The latest external call revert reason.
     */
    function reReason() internal pure returns (bytes memory reason) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            reason := mload(0x40)
            let length := returndatasize()
            mstore(reason, length)
            returndatacopy(add(reason, 0x20), 0, length)
            mstore(0x40, add(reason, add(0x20, length)))
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
import "../interfaces/IPermit2.sol";
import "../interfaces/IERC7597Permit.sol";
import "../interfaces/IWETH.sol";
import "../libraries/RevertReasonForwarder.sol";

/**
 * @title Implements efficient safe methods for ERC20 interface.
 * @notice Compared to the standard ERC20, this implementation offers several enhancements:
 * 1. more gas-efficient, providing significant savings in transaction costs.
 * 2. support for different permit implementations
 * 3. forceApprove functionality
 * 4. support for WETH deposit and withdraw
 */
library SafeERC20 {
    error SafeTransferFailed();
    error SafeTransferFromFailed();
    error ForceApproveFailed();
    error SafeIncreaseAllowanceFailed();
    error SafeDecreaseAllowanceFailed();
    error SafePermitBadLength();
    error Permit2TransferAmountTooHigh();

    // Uniswap Permit2 address
    address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
    bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
    uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;

    /**
     * @notice Fetches the balance of a specific ERC20 token held by an account.
     * Consumes less gas then regular `ERC20.balanceOf`.
     * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
     * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
     * @param token The IERC20 token contract for which the balance will be fetched.
     * @param account The address of the account whose token balance will be fetched.
     * @return tokenBalance The balance of the specified ERC20 token held by the account.
     */
    function safeBalanceOf(
        IERC20 token,
        address account
    ) internal view returns(uint256 tokenBalance) {
        bytes4 selector = IERC20.balanceOf.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0x00, selector)
            mstore(0x04, account)
            let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
            tokenBalance := mload(0)

            if or(iszero(success), lt(returndatasize(), 0x20)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another.
     * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
     * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
     */
    function safeTransferFromUniversal(
        IERC20 token,
        address from,
        address to,
        uint256 amount,
        bool permit2
    ) internal {
        if (permit2) {
            safeTransferFromPermit2(token, from, to, amount);
        } else {
            safeTransferFrom(token, from, to, amount);
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bytes4 selector = token.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            success := call(gas(), token, 0, data, 100, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFromPermit2(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
        bytes4 selector = IPermit2.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            mstore(add(data, 0x64), token)
            success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
            if success {
                success := gt(extcodesize(_PERMIT2), 0)
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens to another address.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param value The amount of tokens to transfer.
     */
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        if (!_makeCall(token, token.transfer.selector, to, value)) {
            revert SafeTransferFailed();
        }
    }

    /**
     * @notice Attempts to approve a spender to spend a certain amount of tokens.
     * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     */
    function forceApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        if (!_makeCall(token, token.approve.selector, spender, value)) {
            if (
                !_makeCall(token, token.approve.selector, spender, 0) ||
                !_makeCall(token, token.approve.selector, spender, value)
            ) {
                revert ForceApproveFailed();
            }
        }
    }

    /**
     * @notice Safely increases the allowance of a spender.
     * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to increase the allowance by.
     */
    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
        forceApprove(token, spender, allowance + value);
    }

    /**
     * @notice Safely decreases the allowance of a spender.
     * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to decrease the allowance by.
     */
    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > allowance) revert SafeDecreaseAllowanceFailed();
        forceApprove(token, spender, allowance - value);
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, bytes calldata permit) internal {
        if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The IERC20 token to execute the permit function on.
     * @param owner The owner of the tokens for which the permit is made.
     * @param spender The spender allowed to spend the tokens by the permit.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
        if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * @dev Invokes `tryPermit` with sender as owner and contract as spender.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     * @return success Returns true if the permit function was successfully executed, false otherwise.
     */
    function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
        return tryPermit(token, msg.sender, address(this), permit);
    }

    /**
     * @notice The function attempts to call the permit function on a given ERC20 token.
     * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, IERC7597Permit and IPermit2.
     * It accommodates both Compact and Full formats of these permit types.
     * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
     * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
     * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
     * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
     * before invocation for optimized performance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The address of the ERC20 token on which to call the permit function.
     * @param owner The owner of the tokens. This address should have signed the off-chain permit.
     * @param spender The address which will be approved for transfer of tokens.
     * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
     * @return success A boolean indicating whether the permit call was successful.
     */
    function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
        // load function selectors for different permit standards
        bytes4 permitSelector = IERC20Permit.permit.selector;
        bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
        bytes4 permit2Selector = IPermit2.permit.selector;
        bytes4 erc7597PermitSelector = IERC7597Permit.permit.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // Switch case for different permit lengths, indicating different permit standards
            switch permit.length
            // Compact IERC20Permit
            case 100 {
                mstore(ptr, permitSelector)     // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                {  // stack too deep
                    let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                    let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63

                    calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                    mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                    mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                    mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                }
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // Compact IDaiLikePermit
            case 72 {
                mstore(ptr, daiPermitSelector)  // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                {  // stack too deep
                    let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                    let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47

                    mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                    mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                    mstore(add(ptr, 0x84), true)                                  // store allowed = true
                    mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                    mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                }
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // IERC20Permit
            case 224 {
                mstore(ptr, permitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // IDaiLikePermit
            case 256 {
                mstore(ptr, daiPermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // Compact IPermit2
            case 96 {
                // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                mstore(ptr, permit2Selector)  // store selector
                mstore(add(ptr, 0x04), owner) // store owner
                mstore(add(ptr, 0x24), token) // store token

                calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                mstore(add(ptr, 0xa4), spender)                               // store spender
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
            }
            // IPermit2
            case 352 {
                mstore(ptr, permit2Selector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
            }
            // Dynamic length
            default {
                mstore(ptr, erc7597PermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC7597Permit.permit(address owner, address spender, uint256 value, uint256 deadline, bytes memory signature)
                success := call(gas(), token, 0, ptr, add(permit.length, 4), 0, 0)
            }
        }
    }

    /**
     * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
     * @param token The IERC20 token contract on which the call will be made.
     * @param selector The function signature that is to be called on the token contract.
     * @param to The address to which the token amount will be transferred.
     * @param amount The token amount to be transferred.
     * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
     * In case of success but no returned data, validates that the contract code exists.
     * In case of returned data, ensures that it's a boolean `true`.
     */
    function _makeCall(
        IERC20 token,
        bytes4 selector,
        address to,
        uint256 amount
    ) private returns (bool success) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), to)
            mstore(add(data, 0x24), amount)
            success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
    }

    /**
     * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
     * @param weth The IWETH token contract.
     * @param amount The amount of Ether to deposit into the IWETH contract.
     */
    function safeDeposit(IWETH weth, uint256 amount) internal {
        if (amount > 0) {
            bytes4 selector = IWETH.deposit.selector;
            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                mstore(0, selector)
                if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
     * @dev Uses inline assembly to interact with the IWETH contract.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     */
    function safeWithdraw(IWETH weth, uint256 amount) internal {
        bytes4 selector = IWETH.withdraw.selector;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            mstore(0, selector)
            mstore(4, amount)
            if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
     * Consumes less gas then regular `IWETH.withdraw`.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     * @param to The recipient of the withdrawn Ether.
     */
    function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
        safeWithdraw(weth, amount);
        if (to != address(this)) {
            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;
pragma abicoder v1;

// Allows anyone to claim a token if they exist in a merkle root.
interface ISignatureMerkleDrop128 {
    error InvalidProof();
    error DropAlreadyClaimed();

    // Returns the address of the token distributed by this contract.
    function token() external view returns (address);
    // Returns the merkle root of the merkle tree containing account balances available to claim.
    function merkleRoot() external view returns (bytes16);
    // Returns the tree depth of the merkle tree containing account balances available to claim.
    function depth() external view returns (uint256);
    // Claim the given amount of the token to the given address. Reverts if the inputs are invalid.
    function claim(address receiver, uint256 amount, bytes calldata merkleProof, bytes calldata signature) external;
    // Verifies that given leaf and merkle proof matches given merkle root and returns leaf index.
    function verify(bytes calldata proof, bytes16 root, bytes16 leaf) external view returns (bool valid, uint256 index);
    // Returns true if the index has been marked claimed.
    function isClaimed(uint256 index) external view returns (bool);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "evmVersion": "shanghai",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"token_","type":"address"},{"internalType":"bytes16","name":"merkleRoot_","type":"bytes16"},{"internalType":"uint256","name":"depth_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"DropAlreadyClaimed","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"SafeTransferFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"merkleProof","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes16","name":"","type":"bytes16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token_","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"rescueFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"proof","type":"bytes"},{"internalType":"bytes16","name":"root","type":"bytes16"},{"internalType":"bytes16","name":"leaf","type":"bytes16"}],"name":"verify","outputs":[{"internalType":"bool","name":"valid","type":"bool"},{"internalType":"uint256","name":"index","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"proof","type":"bytes"},{"internalType":"bytes16","name":"leaf","type":"bytes16"}],"name":"verify","outputs":[{"internalType":"bool","name":"valid","type":"bool"},{"internalType":"uint256","name":"index","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

60e060405234801561000f575f80fd5b50604051610e96380380610e9683398101604081905261002e916100cf565b338061005357604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61005c81610080565b506001600160a01b039092166080526001600160801b03191660a05260c052610126565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f805f606084860312156100e1575f80fd5b83516001600160a01b03811681146100f7575f80fd5b60208501519093506001600160801b031981168114610114575f80fd5b80925050604084015190509250925092565b60805160a05160c051610d2b61016b5f395f8181610176015261065301525f818160d70152818161036d01526104c901525f81816102c2015261054c0152610d2b5ff3fe6080604052600436106100bb575f3560e01c80638da5cb5b11610071578063b33302c71161004c578063b33302c714610273578063f2fde38b14610292578063fc0c546a146102b1575f80fd5b80638da5cb5b146101db5780638ebb005d146102255780639e34070f14610244575f80fd5b8063631c56ef116100a1578063631c56ef14610165578063715018a6146101a657806378e3214f146101bc575f80fd5b80632eb4a7ab146100c65780633956851b1461012f575f80fd5b366100c257005b5f80fd5b3480156100d1575f80fd5b506100f97f000000000000000000000000000000000000000000000000000000000000000081565b6040517fffffffffffffffffffffffffffffffff0000000000000000000000000000000090911681526020015b60405180910390f35b34801561013a575f80fd5b5061014e610149366004610ab6565b6102e4565b604080519215158352602083019190915201610126565b348015610170575f80fd5b506101987f000000000000000000000000000000000000000000000000000000000000000081565b604051908152602001610126565b3480156101b1575f80fd5b506101ba6102ff565b005b3480156101c7575f80fd5b506101ba6101d6366004610b3a565b610312565b3480156101e6575f80fd5b505f5473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610126565b348015610230575f80fd5b5061014e61023f366004610b62565b610364565b34801561024f575f80fd5b5061026361025e366004610bb2565b61039e565b6040519015158152602001610126565b34801561027e575f80fd5b506101ba61028d366004610bc9565b6103dc565b34801561029d575f80fd5b506101ba6102ac366004610c4d565b610588565b3480156102bc575f80fd5b506102007f000000000000000000000000000000000000000000000000000000000000000081565b5f806102f2868686866105f0565b9150915094509492505050565b610307610679565b6103105f6106cb565b565b61031a610679565b73ffffffffffffffffffffffffffffffffffffffff82166103435761033f338261073f565b5050565b61033f73ffffffffffffffffffffffffffffffffffffffff83163383610816565b5f8061039285857f0000000000000000000000000000000000000000000000000000000000000000866105f0565b91509150935093915050565b5f806103ac61010084610c93565b90505f6103bb61010085610ca6565b5f9283526001602081905260409093205492901b9182169091149392505050565b6040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606088901b1660208201525f9061045c90603401604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b90505f61046a828585610878565b6040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606083901b166020820152603481018990529091505f906054016040516020818303038152906040528051906020012090505f806104ee89897f0000000000000000000000000000000000000000000000000000000000000000866105f0565b9150915081610529576040517f09bde33900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61053281610940565b61057373ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168c8c610816565b61057b6109af565b5050505050505050505050565b610590610679565b73ffffffffffffffffffffffffffffffffffffffff81166105e4576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f60048201526024015b60405180910390fd5b6105ed816106cb565b50565b5f808560018682015b808310156106405782358087106001811461061f57815f52876010528584179550610627565b875f52816010525b505060205f2095508160011b91506010830192506105f9565b5050509190921860801c159460109093047f0000000000000000000000000000000000000000000000000000000000000000031b925050565b5f5473ffffffffffffffffffffffffffffffffffffffff163314610310576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105db565b5f805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b8047101561077b576040517fcd7860590000000000000000000000000000000000000000000000000000000081523060048201526024016105db565b5f8273ffffffffffffffffffffffffffffffffffffffff16826040515f6040518083038185875af1925050503d805f81146107d1576040519150601f19603f3d011682016040523d82523d5f602084013e6107d6565b606091505b5050905080610811576040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050565b610842837fa9059cbb0000000000000000000000000000000000000000000000000000000084846109d5565b610811576040517ffb7f507900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051826041811461089557604081146108ae575f91506108ef565b60408501355f1a602083015260408560408401376108ef565b60208501358060ff1c601b01602084015260208660408501377f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1660608301525b508015610938577f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a160608201511015610938578481525f805260205f60808360015afa505f5191505b509392505050565b600881901c5f8181526001602081905260409091205460ff841691821b8117808203610998576040517f1e65ff1f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f9384526001602052604090932092909255505050565b4780156105ed576105ed6109ce6109c861ea6048610cb9565b83610a24565b329061073f565b5f60405184815283600482015282602482015260205f6044835f8a5af19150508015610a1c573d8015610a135760015f5114601f3d11169150610a1a565b5f863b1191505b505b949350505050565b5f818310610a325781610a34565b825b90505b92915050565b5f8083601f840112610a4d575f80fd5b50813567ffffffffffffffff811115610a64575f80fd5b602083019150836020828501011115610a7b575f80fd5b9250929050565b80357fffffffffffffffffffffffffffffffff0000000000000000000000000000000081168114610ab1575f80fd5b919050565b5f805f8060608587031215610ac9575f80fd5b843567ffffffffffffffff811115610adf575f80fd5b610aeb87828801610a3d565b9095509350610afe905060208601610a82565b9150610b0c60408601610a82565b905092959194509250565b803573ffffffffffffffffffffffffffffffffffffffff81168114610ab1575f80fd5b5f8060408385031215610b4b575f80fd5b610b5483610b17565b946020939093013593505050565b5f805f60408486031215610b74575f80fd5b833567ffffffffffffffff811115610b8a575f80fd5b610b9686828701610a3d565b9094509250610ba9905060208501610a82565b90509250925092565b5f60208284031215610bc2575f80fd5b5035919050565b5f805f805f8060808789031215610bde575f80fd5b610be787610b17565b955060208701359450604087013567ffffffffffffffff80821115610c0a575f80fd5b610c168a838b01610a3d565b90965094506060890135915080821115610c2e575f80fd5b50610c3b89828a01610a3d565b979a9699509497509295939492505050565b5f60208284031215610c5d575f80fd5b610a3482610b17565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82610ca157610ca1610c66565b500490565b5f82610cb457610cb4610c66565b500690565b8082028115828204841417610a37577f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffdfea2646970667358221220bcfb7109300f22437a7f2522f92947c9c5628d89f69b694516d9c47bbfc0854f64736f6c63430008170033000000000000000000000000111111111117dc0aa78b770fa6a738034120c3029f06c4c79e63f55d17dc6e07a1dfcf56000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008

Deployed Bytecode

0x6080604052600436106100bb575f3560e01c80638da5cb5b11610071578063b33302c71161004c578063b33302c714610273578063f2fde38b14610292578063fc0c546a146102b1575f80fd5b80638da5cb5b146101db5780638ebb005d146102255780639e34070f14610244575f80fd5b8063631c56ef116100a1578063631c56ef14610165578063715018a6146101a657806378e3214f146101bc575f80fd5b80632eb4a7ab146100c65780633956851b1461012f575f80fd5b366100c257005b5f80fd5b3480156100d1575f80fd5b506100f97f9f06c4c79e63f55d17dc6e07a1dfcf560000000000000000000000000000000081565b6040517fffffffffffffffffffffffffffffffff0000000000000000000000000000000090911681526020015b60405180910390f35b34801561013a575f80fd5b5061014e610149366004610ab6565b6102e4565b604080519215158352602083019190915201610126565b348015610170575f80fd5b506101987f000000000000000000000000000000000000000000000000000000000000000881565b604051908152602001610126565b3480156101b1575f80fd5b506101ba6102ff565b005b3480156101c7575f80fd5b506101ba6101d6366004610b3a565b610312565b3480156101e6575f80fd5b505f5473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610126565b348015610230575f80fd5b5061014e61023f366004610b62565b610364565b34801561024f575f80fd5b5061026361025e366004610bb2565b61039e565b6040519015158152602001610126565b34801561027e575f80fd5b506101ba61028d366004610bc9565b6103dc565b34801561029d575f80fd5b506101ba6102ac366004610c4d565b610588565b3480156102bc575f80fd5b506102007f000000000000000000000000111111111117dc0aa78b770fa6a738034120c30281565b5f806102f2868686866105f0565b9150915094509492505050565b610307610679565b6103105f6106cb565b565b61031a610679565b73ffffffffffffffffffffffffffffffffffffffff82166103435761033f338261073f565b5050565b61033f73ffffffffffffffffffffffffffffffffffffffff83163383610816565b5f8061039285857f9f06c4c79e63f55d17dc6e07a1dfcf5600000000000000000000000000000000866105f0565b91509150935093915050565b5f806103ac61010084610c93565b90505f6103bb61010085610ca6565b5f9283526001602081905260409093205492901b9182169091149392505050565b6040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606088901b1660208201525f9061045c90603401604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b90505f61046a828585610878565b6040517fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606083901b166020820152603481018990529091505f906054016040516020818303038152906040528051906020012090505f806104ee89897f9f06c4c79e63f55d17dc6e07a1dfcf5600000000000000000000000000000000866105f0565b9150915081610529576040517f09bde33900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61053281610940565b61057373ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000111111111117dc0aa78b770fa6a738034120c302168c8c610816565b61057b6109af565b5050505050505050505050565b610590610679565b73ffffffffffffffffffffffffffffffffffffffff81166105e4576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f60048201526024015b60405180910390fd5b6105ed816106cb565b50565b5f808560018682015b808310156106405782358087106001811461061f57815f52876010528584179550610627565b875f52816010525b505060205f2095508160011b91506010830192506105f9565b5050509190921860801c159460109093047f0000000000000000000000000000000000000000000000000000000000000008031b925050565b5f5473ffffffffffffffffffffffffffffffffffffffff163314610310576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105db565b5f805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b8047101561077b576040517fcd7860590000000000000000000000000000000000000000000000000000000081523060048201526024016105db565b5f8273ffffffffffffffffffffffffffffffffffffffff16826040515f6040518083038185875af1925050503d805f81146107d1576040519150601f19603f3d011682016040523d82523d5f602084013e6107d6565b606091505b5050905080610811576040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050565b610842837fa9059cbb0000000000000000000000000000000000000000000000000000000084846109d5565b610811576040517ffb7f507900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f604051826041811461089557604081146108ae575f91506108ef565b60408501355f1a602083015260408560408401376108ef565b60208501358060ff1c601b01602084015260208660408501377f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1660608301525b508015610938577f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a160608201511015610938578481525f805260205f60808360015afa505f5191505b509392505050565b600881901c5f8181526001602081905260409091205460ff841691821b8117808203610998576040517f1e65ff1f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f9384526001602052604090932092909255505050565b4780156105ed576105ed6109ce6109c861ea6048610cb9565b83610a24565b329061073f565b5f60405184815283600482015282602482015260205f6044835f8a5af19150508015610a1c573d8015610a135760015f5114601f3d11169150610a1a565b5f863b1191505b505b949350505050565b5f818310610a325781610a34565b825b90505b92915050565b5f8083601f840112610a4d575f80fd5b50813567ffffffffffffffff811115610a64575f80fd5b602083019150836020828501011115610a7b575f80fd5b9250929050565b80357fffffffffffffffffffffffffffffffff0000000000000000000000000000000081168114610ab1575f80fd5b919050565b5f805f8060608587031215610ac9575f80fd5b843567ffffffffffffffff811115610adf575f80fd5b610aeb87828801610a3d565b9095509350610afe905060208601610a82565b9150610b0c60408601610a82565b905092959194509250565b803573ffffffffffffffffffffffffffffffffffffffff81168114610ab1575f80fd5b5f8060408385031215610b4b575f80fd5b610b5483610b17565b946020939093013593505050565b5f805f60408486031215610b74575f80fd5b833567ffffffffffffffff811115610b8a575f80fd5b610b9686828701610a3d565b9094509250610ba9905060208501610a82565b90509250925092565b5f60208284031215610bc2575f80fd5b5035919050565b5f805f805f8060808789031215610bde575f80fd5b610be787610b17565b955060208701359450604087013567ffffffffffffffff80821115610c0a575f80fd5b610c168a838b01610a3d565b90965094506060890135915080821115610c2e575f80fd5b50610c3b89828a01610a3d565b979a9699509497509295939492505050565b5f60208284031215610c5d575f80fd5b610a3482610b17565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82610ca157610ca1610c66565b500490565b5f82610cb457610cb4610c66565b500690565b8082028115828204841417610a37577f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffdfea2646970667358221220bcfb7109300f22437a7f2522f92947c9c5628d89f69b694516d9c47bbfc0854f64736f6c63430008170033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000111111111117dc0aa78b770fa6a738034120c3029f06c4c79e63f55d17dc6e07a1dfcf56000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008

-----Decoded View---------------
Arg [0] : token_ (address): 0x111111111117dC0aa78b770fA6A738034120C302
Arg [1] : merkleRoot_ (bytes16): 0x9f06c4c79e63f55d17dc6e07a1dfcf56
Arg [2] : depth_ (uint256): 8

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000111111111117dc0aa78b770fa6a738034120c302
Arg [1] : 9f06c4c79e63f55d17dc6e07a1dfcf5600000000000000000000000000000000
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000008


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.